

THE FUSION DEVELOPMENT APPROACH TO BUILDING POWER APPS:

USE POWER APPS TO BRING YOUR BUSINESS AND PRO DEVS TOGETHER TO BUILD APPS FAST

EDITION v1.0

PUBLISHED BY

Microsoft Developer Relations, and Power Apps product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2021 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or

transmitted in any form or by any means without the written permission of the

publisher.

This book is provided "as-is" and expresses the author's views and opinions. The

views, opinions and information expressed in this book, including URL and other

Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious.

No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the

"Trademarks" webpage are trademarks of the Microsoft group of companies.

All other marks and logos are property of their respective owners.

Authors:

Shayne Boyer – Principal Developer Advocate - Microsoft

John Sharp – Principal Technologist – Content Master

Alistair Matthews – Principal Technologist – Content Master

Phil Stollery – Principal Technologist – Content Master

Editors and Reviewers:

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.microsoft.com%2F&data=04%7C01%7Cshboyer%40microsoft.com%7Cb1396d7184b84ff63cae08d8fa682a21%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637534672631280414%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=rlcRH4u6zmBvIiC5IVCPgqbq%2FimkpV7QHQ2eW9Jd%2BmA%3D&reserved=0

Greg Hurlman - Sr. Software Engineer - Microsoft

Matt Soucoup - Sr. Developer Advocate – Microsoft

April Dunnam - Sr. Developer Advocate – Microsoft

TABLE OF CONTENTS

Chapter 1: What is the Fusion Development Approach? ... 5

Chapter 2: Introduction to the Sample Scenario .. 8

Chapter 3: Building a Low-code Prototype ... 13

Chapter 4: Using Microsoft Dataverse as the Data Source... 52

Chapter 5: Creating and Publishing a Web API in Azure ... 59

Chapter 6: Using the Web API in Power AppS .. 87

Chapter 7: Adding Functionality to the App ... 129

Chapter 8: Protecting and Deploying the App .. 183

Chapter 9: Conclusions ... 192

Microsoft Power Apps is a great way to build business apps quickly. Power Apps Studio enables a citizen

developer—who may be more familiar with understanding and solving business problems than the technical

nuances associated with writing code—to be actively involved in creating business solutions. The low code

tooling allows a non-technical user to quickly flesh out the design of an app and specify how it should function.

Power Apps supports connectors that can integrate an app with a wide range of data sources and services. The

citizen developer can work with a professional developer who implements connectors to these services. In

turn, the services implement the more intricate parts of the system that require data access and complex

processing. The citizen developer can then plug these connectors into the app. The result is an accelerated

process for designing, building, and deploying business applications.

The purpose of this guide is to summarize the way in which citizen and professional developers can work

together, following a fusion development approach. As you progress through this guide, you’ll play the role of

the different participants in this process to build a complex, fully functional solution that combines Power Apps

with Azure services.

PREQUISITES AND SETUP

To perform the steps described in this guide, you require the following licenses and software:

• A Git client, such as Git for Windows or the Git command line tools, available at https://git-scm.com.

• A Power Apps account. If your organization has an Office 365 account, you may be able to create a free

Power Apps account. See the Microsoft Power Apps page at https://powerapps.microsoft.com/ to get

started.

• An Azure subscription. The apps built by the steps in this guide create and use resources in Azure. If you

don’t have a subscription, you can sign up on the Microsoft Azure page at https://azure.microsoft.com.

• The Azure CLI, available at https://aka.ms/AAbvfzf.

• .NET 5.0, available on the Download .NET page at https://aka.ms/AAbvu77.

• Visual Studio Code, available at https://aka.ms/AAbvu79. You’ll also need the following extensions for

Visual Studio Code:

o The C# extension for Visual Studio Code. This extension is available in the Visual Studio Code

Marketplace at https://aka.ms/AAbvu72.

https://git-scm.com/
https://powerapps.microsoft.com/
https://azure.microsoft.com/
https://aka.ms/AAbvfzf
https://aka.ms/AAbvu77
https://aka.ms/AAbvu79
https://aka.ms/AAbvu72

o The Azure App Service extension, at https://aka.ms/AAbvgm8.

o The Azure Account extension, at https://aka.ms/AAbvgm7.

o The SQL Server extension, at https://aka.ms/AAbvgm5.

The complete code for the Web API and the app is available in GitHub at https://github.com/microsoft/fusion-

dev-ebook

Clone this repository locally on your computer and read the README.md file carefully. Before continuing with

this chapter, make sure you have created the Azure SQL Database Server and databases required by the app

using the instructions in the README.md file.

https://aka.ms/AAbvgm8
https://aka.ms/AAbvgm7
https://aka.ms/AAbvgm5
https://github.com/microsoft/fusion-dev-ebook
https://github.com/microsoft/fusion-dev-ebook

CHAPTER 1: WHAT IS THE FUSION DEVELOPMENT APPROACH?

Effective application development depends on accurate and efficient communication of business

requirements, and ideas for addressing these requirements. Many software engineering strategies promote

the concept of the end users of applications being highly involved throughout the lifetime of the development

process. However, there is frequently a glass wall between the end users and the software creators. Both

parties can see each other and talk through their perspectives of how a new system should work, but the

terminology spoken by one party might be

different from that understood by the other.

The need to translate language and ideas

into a grammar that all members involved in

the development process can agree on is

fundamental to success. Additionally, in a

rapidly changing business environment, time

is of the essence. Failure to be agile enough

to exploit a narrow window of opportunity

can be costly. By building Microsoft Power

Apps you can create and deploy working

solutions that meet users’ needs very

quickly.

Power Apps enables a business user to

quickly innovate and experiment with ways

to improve their business processes. Using

Power Apps, citizen developers who

understand the business requirements can

quickly put together the basics of a solution,

with the minimum of coding effort. A citizen

developer uses the graphical tooling

provided by Power Apps Studio to create the

business user’s interface to a new system

and some elemental logic that describes the

functionality—typically involving data entry

forms, displays, and reports. It’s relatively

easy to generate a working app from the data connectors that are supplied with Power Apps. These

connectors enable the user interface to connect to many data sources, such as Microsoft SQL Server, Microsoft

SharePoint, Oracle, Microsoft Excel, Twitter, Microsoft Dynamics, and several hundred others.

Note: You can find a full list of connectors on the Connector Reference Overview page at

https://aka.ms/AAbvfzh

https://aka.ms/AAbvfzh

Many Power Apps built like this may fulfill an immediate business need quickly and cheaply, but there will

always be situations where more complexity is involved that cannot be satisfied in this way. For example, your

organization might have existing systems and

databases with which the app needs to interact, and

for which no connector is currently available. There

may be additional business logic that needs to be

enforced to ensure that data remains consistent. An

app might need to implement a complex, dynamic

business flow. This is where professional developers

come into play. After a citizen developer has

produced the front-end prototype for a system, the

professional developer can work with them to create

any appropriate custom connectors that they may

require. A custom connector doesn’t just provide a

path to a data source; a professional developer can

create custom connectors that give access to other

services, such as Azure Logic Apps, which in turn can

invoke Azure Functions. Connectors such as these

enable the citizen developer to incorporate complex

business logic into their apps without requiring that

they understand how it’s implemented.

A common use case for a custom connector is to

enable an app to access other systems and services

inside and outside of an organization. A professional

developer can create a Web API that wraps the

operations exposed by these systems and services,

host the Web API as an Azure Web App, and then make this web app available to a custom connector through

Azure API Management (APIM).

Note: Other parts of the Microsoft Power Platform can benefit from a similar approach. For example, a citizen

developer might implement business logic in a low code manner through Microsoft Power Automate and

Robotic Process Automation, then utilize Web APIs to integrate other services into this logic. You can also build

chatbots with Microsoft Power Virtual Agents that combine AI capabilities with data and services exposed

through Web APIs.

Fusion Development with Power Apps is about combining the worlds of the citizen developer, the professional

developer, and the other parties instrumental in building and using applications to further the objectives of the

business. A citizen developer can express the business need quickly by building an app, and work with a

professional developer to fill in the gaps. End users can provide feedback on missing functionality and any

changes required. The whole process is highly iterative, perhaps more so than many other Agile processes,

with the velocity of possibly several iterations a day.

Note: Gartner describes digital fusion teams as “distributed and multidisciplinary digital business teams that

blend technology and other types of domain expertise. At least 84% of companies and 59% of government

entities have fusion teams.” (Source: 2019 Gartner Digital Business Teams Survey)

Note: For a more detailed introduction to the Fusion Development process, and how it can accelerate

development times, read Citizen developers use Microsoft Power Apps to build an intelligent launch

assistant at https://aka.ms/AAbvfzj

https://aka.ms/AAbvfzj

CHAPTER 2: INTRODUCTION TO THE SAMPLE SCENARIO

VanArsdel Heating and Air Conditioning is the world’s leading company in furnace and air conditioning

installation and repair. The business sends field technicians to customers’ houses to install and repair all

brands of heating and air conditioning equipment. The business has grown exponentially over the past year.

While still a small company, VanArsdel relied a lot on manual and paper-intensive work processes. However, as

the company has grown, it has experienced some friction in scaling the core business applications, as outlined

by the use cases described in the following sections:

FIELD INVENTORY MANAGEMENT

When a technician arrives at a customer’s home and finds they don’t have a part on the truck needed for the

repair, they sometimes travel back to the shop and grab it from the warehouse. They fill out a piece of paper

stating the part has been removed. If the part is not stocked, the technician requests that it’s needed. An office

inventory manager then spends part of their day placing orders with a legacy system making sure the

warehouse is appropriately stocked. This pattern of work results in the following inefficiencies:

• The technician must make a round trip to grab a needed part. That could result in a wasted trip if the part

isn’t in stock.

• The office inventory manager needs to check a spreadsheet of parts in stock several times a day to order

new supplies.

• Because mistakes do happen, the office inventory manager must audit the spreadsheet against the

inventory.

A solution is to create an app that allows the field technician to check inventory from the field and place an

order immediately if that’s necessary. The app will interface with a Web API running in Azure, that provides

controlled access to the legacy inventory management system. The office inventory manager can connect to

the same legacy system through a desktop app running on-premises. The desktop app enables the office

inventory manager to see what parts are currently in stock, and when to place orders to replenish areas that

are running low.

FIELD KNOWLEDGEBASE

It’s impossible for one single technician to know everything about every model of furnace or air conditioner

they may encounter in the field. However, with the knowledge of a great team of technicians, there’s always

somebody who has solved a problem before. To tap into this wealth of knowledge, an individual technician

might have to play phone tag with several other colleagues while they track down the one person who has

solved the problem they are currently facing. This approach has several issues, including:

• Making several phone calls to find the one person who has solved a problem is a time intensive process.

• The person with the answer could be busy, causing the first technician to wait.

• Knowledge is subject to ebb and flow with technician turnover. Important information can be easily lost or

misremembered unless it is recorded.

A solution is to capture the information about furnaces and air conditioners, problems that have occurred, and

how they were fixed, in a knowledge base. An app could allow a technician to record comments about a job

and the repairs performed while still at the customer’s premises. The same app could provide an interface that

allows the technician to query the knowledge base about useful information that other technicians may have

addressed on similar jobs. The knowledge base itself could be implemented as a database with Azure Cognitive

Search providing the lookup facility, based on one or more key words.

FIELD SCHEDULING AND NOTES

Customers contact the VanArsdel office to make appointments. Throughout the day things change. Customers

cancel visits and emergencies take priority over other events. Customers may provide additional information

about the job. The office receptionist stores this information in a legacy customer database.

Each morning, technicians receive their schedule for customer visits for the day at the office, in the form of a

printout from the legacy system, before heading into the field. This schedule contains information about

customers and jobs. If this information changes during the day, the office receptionist must try to manually call

the technician in the field to pass on any updates.

While in the field, the technicians take notes and will manually update the same customer information

database when they return to the office at the end of the day.

There are several obvious drawbacks to the current scheduling strategy:

• If a customer cancels a visit and the office is unable to reach the technician, the technician will make an

unnecessary stop. The technician might also miss a chance to be rescheduled to a new customer.

• The technician might not go to the most important jobs.

• The technician spends a lot of time at the end of the day updating customer notes when they would

rather go home.

VanArsdel could use an app that acts as a front end to the legacy system. It would enable the office

receptionist staff to record appointments and cancellations, and add any additional notes to customer records.

An app that’s available to technicians can provide access to their appointments schedule in real time and see

any changes. The same app should enable technicians to enter notes about a finished job and save this

information back to the legacy system.

FUSION DEVELOPMENT TEAM MEMBERS

VanArsdel Heating and Air Conditioning have started a Fusion Development Team to design and build solutions

that solve the problems and inefficiencies highlighted in the previous sections. The team members are:

• Kiana Anderson: Professional developer. Kiana is a full-stack developer and software architect specializing

in C# and .NET. She has written and designed many of VanArsdel’s applications but is getting stretched

very thin by all the new requests. Kiana is familiar with Power Apps at a high level but is skeptical of having

non-developers create applications.

• Maria Zelaya: Inventory management. Maria makes sure VanArsdel runs like a well-oiled machine. She

verifies the warehouse has enough parts and, if not, orders more using a legacy system that Kiana wrote.

But more than that, Maria performs audits on the inventory, checks with vendors for the best prices, and

does other inventory supply management tasks.

• Caleb Foster: Field technician/engineer. Caleb is VanArsdel’s lead field technician. He is very

knowledgeable and is on the phone a lot, mentoring junior technicians. Caleb’s time is very valuable and

VanArsdel wants to make sure he visits as many of their most valuable customers on a daily basis.

• Malik Barden: Office receptionist. Malik is the heart of the VanArsdel office. He answers all customer

inquiries, schedules appointments, and even helps technicians find answers when they need to. In other

words, he’s overworked and needs to automate some of his repetitive tasks to provide even better

customer service.

• Preeti Rajdan: IT Operations. Preeti is responsible for making sure the IT systems are up and running. She

worries a lot about security and applications that might accidentally leave backdoors open. She also is

stretched thin and needs to be sure any new apps are easy to govern and administer.

CHAPTER 3: BUILDING A LOW-CODE PROTOTYPE

Note: The previous chapter referenced the mobile app used by the field technicians and engineers, and

desktop Power Apps used by on-premises staff. The following chapters focus on the design, implementation,

and rollout of the mobile Power Apps. The desktop Power Apps are left as an exercise for the reader.

Kiana is skeptical of low-code solutions and Power Apps, but she and Maria decide to build an app together to

help the field technicians check inventory (and order parts if necessary), query the knowledge base, and check

their next appointment while out of the office, on service calls. Kiana and Maria plan to use this experience to

explore how to add controls and use formulas in Power Apps.

Although building an initial low-code prototype is primarily a typical citizen developer task, Kiana decides to

pay attention to the process to ensure that she understands how the app is constructed. She needs this

information to enable her to help Maria integrate the real-world data sources, Web APIs, and other services

required into the app.

ITEM 1: FIELD INVENTORY MANAGEMENT

Maria’s initial aim is to build a canvas app that displays a list of parts and enables the user to view the details

of any part. The user should also be able to order a part. However, this initial version of the app will simply be

a prototype and won’t be hooked up to a back end yet. After she has obtained feedback from Caleb, the lead

field technician, Maria will work with Kiana on integrating the canvas app with the inventory system running

on-premises.

Maria is very familiar with the existing inventory management system and understands the information that it

contains. She starts by creating an Excel spreadsheet that contains tables holding mock data with the details of

some sample parts. The fields in the table are ID, Name, CategoryID, Price, Overview, NumberInStock, and

Image (a URL that references an image of the part). She can use this spreadsheet to build and test the canvas

app, to ensure that it displays the required data correctly. She stores this spreadsheet in her OneDrive account

with the name BoilerParts.xlsx:

Note: You can find a copy of this spreadsheet in the Assets folder in the Git repository for this guide.

Notes: if you are a relational database designer, you’ll notice that the Excel spreadsheet presents a

denormalized view of the data. For example, in a relational database, CategoryID would most likely be a

numeric identifier that references a separate table containing the details of the category, including the name.

The URLs in the Image column are currently just placeholders. In the completed app, these URLs will be

replaced with the addresses of real image files.

Follow these steps to create the app:

1. Sign in to Power Apps Studio at http://make.powerapps.com.

2. On the Home page, under Start from data, select Excel Online:

http://make.powerapps.com/

3. On the Connections page, select OneDrive for Business, and then select Create:

4. On the OneDrive for Business page, select the BoilerParts.xlsx Excel spreadsheet:

5. Select the table in the Excel sheet (Maria created the table with the default name, Table1), and then select

Connect:

6. Wait while Power Apps generates the app:

7. When the app has been generated, you should see the Browse screen, displaying the CategoryID, ID, and

Image fields from each row of the parts table in the spreadsheet:

8. The fields currently displayed are not that useful for helping an engineer to select a specific product. In the

pane displaying the Browse screen, select the Heat Exchanger label in the first row of data. In the formula

bar select the Text property from the drop-down list. Change the value of this property to ThisItem.Name.

The text in the first field of each row will switch to display the part name.

Note: In the image below, the Heat Exchanger label originally displayed on the form has changed to the

product name, 3.5 W/S Heater.

9. Repeat the previous step for the ID and Image labels. Change the Text property of the ID field to

CategoryID, and the Text property of the Image field to Overview. The Browse screen should now look

like this. The field engineer should find this information more useful for selecting parts:

10. The search feature of the Browse screen defaults to searching using the fields that were initially selected

when the screen was generated—in this case, the CategoryID, ID, and Image fields. The results are sorted

by CategoryID. It makes sense to switch this to the Name, CategoryID, and Overview fields, with the

results sorted by Name. Select the BrowseGallery1 control in the Tree view pane. In the drop-down list by

the formula bar select the Items property. Drag the lower edge of the formula bar down so the formula is

completely visible. The formula contains the expression SortByColumns(Search([@Table1],

TextSearchBox1.Text, "CategoryID","ID","Image"), "CategoryID", If(SortDescending1, Descending,

Ascending)):

11. Change the Search expression to reference the Name, CategoryID, and Overview fields:

SortByColumns(Search([@Table1], TextSearchBox1.Text, "Name", "CategoryID", "Overview"), "Name",

If(SortDescending1, Descending, Ascending)).

12. The title in the form header isn’t helpful, and the default theme doesn’t match the corporate look and

feel. In the Browse screen, select the Table1 label, and on the Formula bar change the Text property of

the label to “Browse Parts” (include the double quotes in the value):

13. In the toolbar, select Theme (you might have to click the drop-down arrow displaying more items for the

toolbar), and then select the Forest theme. The colors and styling for the Browse screen should change to

match this theme:

You have created the basic app and modified the Browse screen to display the fields that an engineer can use

to identify a part. The app also contains a Details screen which shows all the information for a selected part.

The fields on this screen aren’t currently displayed in a logical sequence, so you should rearrange them. You

can also delete the Part ID from this screen as this information is irrelevant to an engineer. The following steps

describe this process:

1. In the Tree view pane on the left, scroll down and select the DetailScreen1 screen. This screen appears

when the user selects an item in the Browse screen. It displays the details of the selected part:

2. In the header of the Details screen in the middle pane, select the Table1 label. On the Properties tab in

the right pane, change the Text property to Part Details.

Note: In many cases, the Properties pane is an alternative to using the formula bar; the results are the

same. However, there are some properties which are only available through the Properties pane.

3. In the Tree view pane on the left, scroll down and select the DetailForm1 form under the DetailScreen1

screen. In the right pane, on the Properties tab, in the Fields field, select Edit fields. In the middle pane,

click and drag each field so that they are displayed in the following order, from top to bottom:

• Name

• CategoryID

• Overview

• Price

• NumberInStock

• Image

• ID

4. Select the ID field, click the ellipsis that appears on the right of the field, and then select Remove from the

drop-down menu that appears. This action removes the ID field from the form:

5. In the Tree view pane on the left, scroll down and select the CategoryID_DataCard1 element under the

DetailForm1 form. This element is a DataCard control that displays the name of a field (called the key)

and its value.

In the right pane, on the Advanced tab, select Unlock to change properties. In the Data section, change

the DisplayName field to “Category” (including the quotes).

Note: As with the Properties tab, many of the properties on the Advanced tab are also accessible through

the formula bar. In these situations, you can use the formula bar if you prefer.

6. Repeat this process to change the key for the NumberInStock_DataCard1 DataCard to “Number in Stock”.

7. The formatting of the Price field should be adjusted to display the data as a currency value. In the Tree

view pane, locate the Price_DataCard1 element under the DetailForm1 form and select the

DataCardValue7 element. This is the field that displays the value of the Price field. In the DataCardValue7

pane on the right, on the Advanced tab, change the Text property to Text(Value(Parent.Default), "[$-en-

US]$ ###,##0.00"):

The expression Parent.Default refers to the data item to which the parent control (the DataCard) is

bound; in this case, the Price column. The Text function reformats this value using the format specified as

the second argument; local currency with two decimal places, in this example.

8. The Image DataCard should display an image of the part rather than the URL of the image file. In the Tree

view pane, locate the Image_DataCard1 element under the DetailForm1 form, select the DataCardValue3

element, and then press Delete to remove this control.

9. Select the Image_DataCard1 element. In the left pane, select + Insert. In the Insert pane, expand the

Media subtree, and select the Image control:

10. Return to the Tree view pane, and verify that the HTML text control (Image1) has been added to the

Image_DataCard1 control:

11. In the Tree view pane, select the Image_DataCard1 control. Change the Height property to 500, to allow

sufficient space for an image to be displayed:

12. In the Tree view pane, select the Image1 control. Set the following properties:

• Image: Parent.Default

• ImagePosition: ImagePosition.Fit

• Width: 550

• Height: 550

Note: The image displayed is currently empty because the URL in the Excel spreadsheet is just a

placeholder. You’ll address this issue, and fetch a real URL, when you bind the app to a Web API in a later

chapter.

The app also contains an Edit screen which enables a user to change the information for a part. An engineer

shouldn’t be able to change the details of a part, create new parts, or delete parts from the catalog. Remove

this functionality from the app as follows:

1. In the Tree view pane on the left, scroll down and select the EditScreen1 screen. Select the ellipsis button,

and then select Delete to remove this screen:

2. In the Tree view pane on the left, scroll down and select the DetailsScreen1 screen. Notice that Power

Apps Studio is displaying an error message for this screen. This error occurs because the DetailsScreen1

contains expressions that reference the EditScreen1 screen, which no longer exists:

3. In the header of the DetailsScreen1, select the pencil (IconEdit1) icon. The OnSelect property for this

control contains the expression EditForm(EditForm1);Navigate(EditScreen1, ScreenTransition.None).

When the Edit icon is selected, this expression runs and attempts to move to the EditScreen1 screen:

4. In the Tree view pane, select the IconEdit1 control and press Delete. This icon is no longer required.

5. Select the IconDelete1 control and press Delete. This icon is used to delete the current part, and is also

not required:

6. Notice that the Part Details text has disappeared from the screen header, and instead Power Apps Studio

is displaying an error message. This has happened because the width of the label control displaying the

text is calculated. In the Tree view pane, select the LblAppName2 label control. Examine the Width

property. The value of this property is the result of the expression Parent.Width - Self.X -

IconDelete1.Width - IconEdit1.Width:

7. Change the expression for the Width property to Parent.Width - Self.X. The error should disappear, and

the Part Details text should reappear in the screen header.

8. In the Tree view pane, scroll up and select the BrowseScreen1 screen. This screen will also display an

error message. The + icon in the toolbar (IconNewItem1) enables the user to add a new part. The

OnSelect property for this icon references the EditScreen1 screen.

9. Select the IconNewItem1 icon, and then press Delete. As before, the text in the header for the screen

disappears with an error message, and for the same reason.

10. In the Tree view pane, select the LblAppName1 label control under BrowseScreen1. Modify the

expression for the Width property and remove the reference to IconNewItem1.Width. The new

expression should be Parent.Width - Self.X - IconSortUpDown1.Width - IconRefresh1.Width:

11. There is still a problem with the header. Although the Browse Parts text has reappeared, there’s an error

and the refresh and sort icons are in the wrong place. Select the IconSortUpDown1 control in the Tree

view pane. Find the X property for this control. This property determines the horizontal position of the

icon in the header. It is currently calculated based on the width of the IconNewItem1 control:

12. Change the value of the expression for the X property to Parent.Width - Self.Width.

13. In the Tree view pane, select the IconRefresh1 control. Change the X property for this control to

Parent.Width - IconSortUpDown1.Width - Self.Width. The errors should now have all disappeared.

You can save and test the application:

1. Select the File menu in the Power Apps Studio toolbar, and then select Save as.

2. Under Save as, select The cloud as the destination, name the app VanArsdelApp, and then select Save.

3. Press the back arrow icon in the Power Apps Studio toolbar to return to the Home screen:

4. Press F5 to preview the app. On the Browse Parts page, select the > symbol for any part. The Details

screen for the part should appear:

5. Click the < icon in the header in the Details screen to return to the Browse screen.

6. On the Browse screen, enter some text in the Search box. As you type, the items will be filtered to only

those that have matching text in the Name, CategoryID, or Overview fields:

7. Close the preview window and return to Power Apps Studio.

ITEM 2: FIELD KNOWLEDGE BASE

For access to the knowledge base, Maria and Caleb (the technician) envisage a simple interface that enables

the user to enter a search term, and for the app to display all knowledge base articles that mention the term.

Maria knows that this process is going to involve Azure Cognitive Search, but doesn’t need, or want, to

understand how it works. Therefore, Maria decides to just provide the basic user interface and will work with

Kiana later to add the actual functionality.

Maria decides to create a new screen based on the List template available in Power Apps Studio, as follows:

1. In Power Apps Studio, on the Home screen, in the toolbar, select New Screen, and then select the List

template:

2. In the screen header, select the label displaying the text [Title]. Change the Text property to “Query”

(including the quotes):

3. In the screen header, select the + icon, and then press Delete. The + icon is intended to enable the user to

add more items to the list. The knowledge base is query only, so this feature isn’t needed.

Notice that removing this icon causes an error in the header due to the way in which the location and

widths of the other items are calculated. You saw this earlier with the Inventory Management screen, and

the solution is the same, as described in the following steps.

4. In the Tree view pane, scroll down to the Screen1 screen, and select the LblAppName3 control. Change

the Width property to the formula Parent.Width - LblAppName3.X - IconSortUpDown2.Width -

IconRefresh2.Width.

5. In the Tree view pane, select the IconSortUpDown2 control. Modify the X property to the formula

Parent.Width - IconSortUpDown2.Width.

6. In the Tree view pane, select the IconRefresh2 control. Modify the X property to Parent.Width -

IconSortUpDown2.Width - IconRefresh2.Width. This should resolve all the errors with the screen.

7. Select the File menu in the Power Apps Studio toolbar, and then select Save.

8. In the Version note box, enter the text Added Knowledgebase UI, and then select Save.

9. Return to the Home screen and press F5 to preview the new screen. It should look like this:

Note that if you press the > icon by any of the dummy entries, the details functionality doesn’t currently

work. You’ll address this later when you integrate Azure Cognitive Search into the app.

10. Close the preview window and return to Power Apps Studio.

ITEM 3: FIELD SCHEDULING AND NOTES

Maria works with Malik, the office receptionist, to design the interface for the field scheduling and

appointments part of the app. Malik provides an Excel spreadsheet with some sample data that Maria can use

to build the appointments screen. The spreadsheet contains a table with the following columns:

• ID (the appointment ID)

• Customer ID (a unique identifier for the customer)

• Customer Name

• Customer Address

• Problem Details (a text description of the problem the customer is experiencing)

• Contact Number

• Status

• Appointment Date

• Appointment Time

• Notes (a text description with any notes added by the engineer)

• Image (a photograph of the appliance, either in working condition after repair, or as a supplementary

picture for the engineer’s notes)

Note: As with the Field Inventory Management data, this spreadsheet represents a denormalized view of the

data. In the existing appointments system, this data is stored in separate tables holding appointment data and

customer data.

Maria stores this spreadsheet in her OneDrive account with the name Appointments.xlsx. Having remembered

that she previously used the default name for the table in the spreadsheet, and had to change the title in the

various screens that were generated, she also names the table in the spreadsheet to Appointments.

Note: This spreadsheet is available in the Assets folder of the Git repository for this guide.

Maria wants to build the appointments part of the app directly from the Excel spreadsheet. She decides to

follow a similar approach to that of the Field Inventory Management functionality, except that this time the

engineer will be allowed to create and edit appointments.

Maria decides to build the appointments screens, initially as a separate app. This way, she can use Power Apps

Studio to generate much of the app automatically. Power Apps Studio doesn’t currently let you generate

additional screens from a data connection in an existing app. When Maria has created and tested the screens,

she will copy them to the Field Inventory and Knowledgebase app.

Note: An alternative approach is to add the Appointments table in the Excel spreadsheet as a second data

source to the existing app and then hand-craft the screens for appointments. Maria opted to generate the new

screens from the spreadsheet and copy the screens; she is currently more familiar with the concepts of copy

and paste than building screens manually, although she will gradually learn how to create screens from scratch

as the process of building this app progresses.

You can follow these steps to create the Appointments app:

1. In Azure Power Apps Studio, select the File menu in the toolbar.

2. On the File page, in the left pane, select New. In the main pane, select Phone layout in the OneDrive for

Business box:

3. In the Connections pane, select the Appointments.xlsx spreadsheet:

4. Select the Appointments table in the Excel Sheet, and then select Connect:

5. Wait while the app is generated. When the new app appears, it’ll contain a Browse screen, a Details

screen, and an Edit screen, using the default theme:

6. In the Tree view pane, under the BrowseGallery1 control in the BrowseScreen1 screen, select the Image1

control and press Delete. The Browse screen should just list appointments and not any images associated

with them:

Notice that removing the Image1 control causes several errors on the screen because the widths and

location of the Title1 control reference the Image control. You’ll fix these problems in the next step.

7. In the Tree view pane, select the Title1 control under BrowseGallery1. Change the value in the X property

to 16. Change the formula in the Width property to Parent.TemplateWidth – 104. This should resolve the

errors for the screen.

8. In the Tree view pane, select the Body1 control under BrowseGallery1. This control currently displays the

contact telephone details for the customer. Change the value in the Text property to ThisItem.’Customer

Name’ (including the single quotes).

The details on the Browse screen name now display the customer name.

9. In the Tree view pane, select the BrowseGallery1 control. Using the formula bar examine the expression

in the Items property. The control searches for appointments using the appointment date, time, and

contact number. Change this formula to search the customer name rather than the contact number:

SortByColumns(Search([@Appointments], TextSearchBox1.Text,

"Appointment_x0020_Date","Appointment_x0020_Time","Customer_x0020_Name")

, "Appointment_x0020_Date", If(SortDescending1, Descending, Ascending)).

Notice that the appointments are ordered by date and then time (the first two fields displayed).

10. In the Tree view pane, delete the IconNewItem1 icon. Only on-premises staff can book new appointments

for engineers and technicians. Notice that this action results in errors in the form because the width and

position of other controls in the header reference the icon you just removed.

11. In the Tree view pane, select the LblAppName1 control. Change the formula for the Width property. to

Parent.Width - Self.X - IconSortUpDown1.Width - IconRefresh1.Width.

12. In the Tree view pane, select the IconRefresh1 icon. Change the value for the X property to Parent.Width

- IconSortUpDown1.Width - Self.Width.

13. In the Tree view pane, select the iconSortUpDown1 icon. Change the value for the X property to

Parent.Width - Self.Width.

14. In the Tree view pane, select the BrowseScreen screen, and then select the ellipsis button. On the drop-

down menu that appears, select Rename and change the name of the screen to BrowseAppointments.

15. Using the same technique, change the name of the BrowseGallery1 control to

BrowseAppointmentsGallery.

That completes the Browse screen. You can now turn your attention to the Details screen.

1. In the Tree view pane, scroll down to the DetailsScreen1 screen. You can see that the details are

presented in alphabetical order of the field names, and not all the useful bits of information, such as the

Notes field, are displayed:

2. In the Tree view pane, select the DetailForm1 control. In the right pane, on the Properties tab, in the

Fields field, select Edit fields. In the middle pane, select each of the following fields, and then press

Delete:

• Appointment Date

• Appointment Time

• Customer ID

• ID

3. In the middle pane, select + Add field, and add the following fields:

• Notes

• Problem Details

• Status

4. In the middle pane, click and drag each field so that they’re displayed in the following order, from top to

bottom:

• Customer Name

• Customer Address

• Contact Number

• Problem Details

• Status

• Notes

• Image

5. In the Tree view pane, select the Notes_DataCard1 control. Change the Height property to 320:

6. In the Tree view pane, delete the IconDelete1 icon. Engineers shouldn’t be able to remove appointments

from the system.

7. Select the LblAppName2 control. Update the Width property of this control to Parent.Width - Self.X -

IconEdit1.Width.

8. Using the technique described earlier, change the name of DetailsScreen1 to AppointmentDetails.

The final screen to look at for now is the Edit screen.

1. In the Tree view pane, scroll down and select the EditScreen1 screen.

2. In the Tree view pane, select the EditForm1 control in the EditScreen1 screen. In the right pane, on the

Properties tab, in the Fields field, select Edit fields.

3. Remove the following fields from the EditForm1 control:

• Customer Address

• ID

• Customer ID

• Appointment Date

• Appointment Time

4. Add the following fields to the form:

• Problem Details

• Status

• Notes

5. Reorganize the fields so that they’re in the following sequence:

• Contact Name

• Customer Number

• Problem Details

• Status

• Notes

• Image

6. Select the Customer Name field and click the drop-down arrow to view its properties. Change the Control

type to View text. This change makes the control read-only; an engineer shouldn’t be able to change the

customer’s name, although it is useful to see it on the Edit screen:

7. Select the Contact Number field and click the drop-down arrow to view its properties. Change the Control

type to View text. This field should also be read only.

8. Select the Notes field, click the drop-down arrow to view its properties, and change the Control type to

Edit multi-line text. This setting enables the engineer to add detailed notes that can span several lines.

9. Select the Status field, click the drop-down arrow to view its properties, and change the Control type to

Allowed Values.

10. In the Tree view pane, select the Status_DataCard5 control. In the right pane, on the Properties tab,

select Unlock to change properties. Scroll down to the AllowedValues property, and change the text to

["Fixed", "Parts Ordered", "Unresolved"] (including the square brackets). The field engineer can only set

the Status to one of these defined values.

11. In the Tree view pane, rename EditScreen1 as EditAppointment.

You can now save and test the app.

1. Select the File menu in the Power Apps Studio toolbar, and then select Save as.

2. Under Save as, select The cloud as the destination, name the app VanArsdelAppointments, and then

select Save.

3. Press the back arrow icon in the Power Apps Studio toolbar to return to the Home screen.

4. Press F5 to preview the app. On the Appointments page, select the > symbol for any appointment. The

Details screen for the appointment should appear. Select the Edit button in the header to update the

appointment. Verify the following:

• The customer name and contact number fields are read-only.

• The status field is limited to the values in the drop-down list box.

• You can enter notes over several lines.

• You can upload an image file to the image field.

Note: An enhancement that you will add later allows you to take a picture with your phone from within

the app, and add it to the image field.

COMBINING THE SCREENS INTO A SINGLE APP

Maria has built two apps, but she wants to combine them into a single app. To do this, she copies the screens

for the Appointments app into the Field Inventory Management and Knowledgebase app, as follows:

1. Open a new browser window and sign in to Power Apps Studio with your account details.

2. In the left pane, select Apps, select the VanArdselApp app, and then select Edit.

3. In the toolbar, select New screen, and then select Blank. This action will add a new screen to the app into

which you will copy the controls for the Browse screen for the VanArsdelAppointments app.

4. The new screen will be called Screen2. In the Tree view pane, rename it as BrowseAppointments.

5. Repeat the previous step twice more, to add two more blank screens (Screen3 and Screen4).

6. Rename Screen3 as AppointmentDetails, and rename Screen4 as AppointmentDetails.

7. In the left toolbar of Power Apps Studio, select the Data icon. In the Data pane, select Add data. In the

Select a data source drop-down list box, in the Search field, type OneDrive, and select OneDrive for

Business.

8. Select the Appointments.xlsx Excel spreadsheet, and the Appointments table, and then select Connect.

9. Switch to the browser window with the VanArsdelAppointments app.

10. In the toolbar, select Theme (you might have to click the drop-down arrow displaying more items for the

toolbar), and then select the Forest theme. This is the same theme used by the VanArsdel app.

11. In the left toolbar, select the Tree view icon, select the BrowseAppointments screen, and then press CTRL

A. This action selects all the controls in the screen.

12. Press CTRL C to copy these controls to the clipboard.

13. Return to the browser window with the VanArsdelApp app.

14. In the left toolbar, select the Tree view icon, and then select the BrowseAppointments screen.

15. Press CTRL V to paste the controls into the screen.

Note: Sometimes the screen header appears slightly too low down. To fix this problem, select the

IconSortUpDOwn1_1, IconRefresh1_1, LblAppName1_1, and RectQuickActionBar1_1 controls in the Tree

view pane (use Shift-click to select more than one control at a time), and then use the mouse or arrow

keys to move them up in the design view pane.

16. Switch back to the browser window with the VanArsdelAppointments app, then select and copy the

controls in the AppointmentDetails screen to the clipboard (CTRL A followed by CTRL C).

17. Return to the browser window with the VanArsdelApp app, select the AppointmentDetails screen, and

paste the controls (CTRL V). Adjust the position of the controls in the screen header if necessary.

Note: You will see an error reported in the header of the AppointmentDetails screen. This error occurs

because the screen references controls in the EditAppointment screen which haven’t been copied yet.

The next steps should resolve this error.

18. Switch back to the browser window with the VanArsdelAppointments app, then select and copy the

controls in the EditAppointment screen to the clipboard.

19. Return to the browser window with the VanArsdelApp app, select the EditAppointment screen, and paste

the controls. Again, move the controls in the screen header if necessary.

20. Select the AppointmentDetails screen in the Tree view menu. Verify that the error indicated previously

has now disappeared.

21. In the Tree view menu, select the BrowseScreen1 screen. Change the name of this screen to BrowseParts.

22. Change the name of the DetailsScreen1 screen to PartDetails.

23. Change the name of the Screen1 screen to Knowledgebase.

Note: It is good practice to rename screens to reflect their function rather than using the default names

generated by Power Apps Studio. This is especially important if an app contains several screens. It can help

to avoid confusion later if the app is modified by another developer.

ADDING A HOME SCREEN TO THE APP

The final stage is to add a Home screen to the app. The Home screen will enable the engineer to move

between the different parts of the app (inventory management, knowledge base, and appointments).

1. In the VanArsdelApp app, in the toolbar, select New screen, and then select Blank.

2. In the Tree view pane, change the name of the screen (Screen2) to Home.

3. In the toolbar, select Insert. In the list of controls, expand Media, and select the Image control. The

control will be added to the screen:

4. Set the X position of the control to 16, and the Y position to 22. Change the Width to 605, and the Height

to 127. Change the Image position to Fill:

5. Still on the Properties tab, in the Image drop-down list box, select + Add an image file, and upload the

VanArsdelLogo.png image to the control:

Note: The image file is available in the Assets folder in the Git repository for this guide.

6. From the list of controls, add four Text label controls to the form and position them as shown in the image

below:

7. Select the uppermost Text label control. In the right pane, on the Properties tab, set the Text property to

Next Appointment. Set the Font Size to 30, and use the color picker to set the font color to Green (to

match the logo):

8. Select the second Text label control. Change the value of the Text property to

First(Appointments).'Customer Name' (including the quotes). This formula retrieves the customer name

from the first row in the appointments table:

Note: Currently, this formula just acts as a placeholder. You will modify this label later to retrieve the next

appointment for the engineer rather than always displaying the first one.

9. Select the third Text label control and set the Text property to First(Appointments).'Appointment Date.

10. Set the Text property of the fourth label control to First(Appointments).'Appointment Time. Set the Font

size property to 30.

11. From the list of controls, add a Rectangle control. Set the following properties for this control:

• Display mode: View

• X: 0

• Y: 632

• Width: 635

• Height: 1

This control acts as a visual separator across the middle of the screen.

12. Add three Button controls to the screen, arranged vertically and spaced evenly below the separator. Set

the Text property for the top button to Appointments, the Text property for the middle button to Parts,

and the Text property for the lower button to Knowledgebase.

13. Select the Appointments button. Change the expression in the OnSelect action to the formula

Navigate(BrowseAppointments ,ScreenTransition.Fade). This action switches the display to the

appointments screen when the user selects the button:

14. Set the OnSelect action for the Parts button to Navigate(BrowseParts, ScreenTransition.Fade).

15. Set the OnSelect action for the Knowledgebase button to Navigate(Knowledgebase,

ScreenTransition.Fade).

As well as navigating from the Home screen to the other screens in the system, the appointments, parts, and

knowledge base screens need a way to enable the user to return to the Home screen. Maria decides to add

back buttons to these screens.

1. In the Tree view pane, select the BrowseParts screen.

2. Select the RectQuickActionBar1 control to give it the focus.

3. Select the Insert menu, and select Add icon. Move the icon to the left of the RectQuickActionBar1

control. Note that the icon will obscure part of the Browse Parts label.

4. In the Tree view menu, change the name of the new icon control to IconReturn1.

5. Change the formula for the OnSelect action to the expression Back(ScreenTransition.Fade). The Back

function navigates the user to the previous screen they visited.

6. On the Properties tab, change the Icon property to < Left.

7. In the screen header, select the Browse Parts label. Change the X property to IconReturn1.Width + 20.

The Browse parts label should no longer be partially obscured.

8. Following the process described in steps 16 to 22, add an icon named IconReturn2 to the

RectQuickActionBar3 control in the Knowledgebase screen.

9. Similarly, add an icon named IconReturn3 to the RectQuickActionBar1_1 control in the

BrowseAppointments screen.

10. In the Tree view pane, select the App object. Change the OnStart action property to the expression

Navigate(Home, ScreenTransition.Fade). This action ensures that the Home screen is displayed whenever

the app starts:

Note: If you don’t specify which screen should be displayed when the app starts, the screen that appears at

the top of the Tree view pane will be used. To move a screen to the start of the list, right-click the screen in

the Tree view pane and select Move up until it is at the top.

Finally, you can test the app.

1. On the File menu, on the Save tab, enter the text Complete version with Home screen in the Version note

box, and select Save.

2. Select the back arrow icon to return to the Home screen and press F5 to run the app.

3. Verify that the Home screen for the app appears.

4. Select Appointments. The appointments browser screen should appear.

5. Click the back arrow icon in the screen header to return to the Home screen.

6. Select Parts. The parts browser should appear.

7. Click the back arrow icon in the screen header to return to the Home screen.

8. Select Knowledgebase. The knowledge base query screen should appear.

9. Click the back arrow icon in the screen header to return to the Home screen.

10. Close the preview window and return to Power Apps Studio.

The prototype app is now complete.

CHAPTER 4: USING MICROSOFT DATAVERSE AS THE DATA SOURCE

Maria has built a prototype app using test data held in Excel spreadsheets. She can now consider how to

connect the app to data sources that will provide real-world data. She has heard about Microsoft Dataverse as

an option for doing this, but she wants to know more about it.

WHAT IS MICROSOFT DATAVERSE?

Microsoft Dataverse is a data store with a set of standard tables. It enables you to store business information,

manage business rules, and define business dataflows. In many ways it acts like a database, except that it holds

more than just data. You can use it to record elements of business logic for your solutions, and share this logic

across Power Apps. Dataverse includes scheduling capabilities that enable you to automate processing and

workflows. Additionally, you can add charts and associate them with your data; Power Apps can reference

these charts directly from Dataverse.

Dataverse follows the low-code approach of Power Apps, enabling a business user to create business entities

and workflows. Additionally, Dataverse is a scalable, reliable, and secure system, implemented in Azure. Azure

Role-Based Access Control (RBAC) limits the type of access to different users in your organization; users can

only see or manipulate the entities to which they are granted access.

Note: The definitions of Power Apps and users are also stored in Dataverse. Power Apps Studio uses this

information for creating, editing, and publishing Power Apps.

Dataverse enables you to unify data held in disparate databases into a single repository. You can create

dataflows that periodically ingest data held in one or more databases into the tables in Dataverse to create

aggregated datasets.

DEFINING ENTITIES AND RELATIONSHIPS IN DATAVERSE

Dataverse contains a collection of open-sourced, standardized, extensible data entities and relationships that

Microsoft and its partners have published in the industry-wide Open Data Initiative. The data for these entities

is stored in a set of tables. Dataverse defines entities for many common business objects, such as Accounts,

Addresses, Contacts, Organizations, Teams, and Users. You can view the tables in Dataverse from the Tables

tab under Data in Power Apps Studio. You can add your own custom tables to Dataverse if necessary, but it’s

good practice to use the existing tables wherever possible as this will help to ensure the portability of your

Power Apps. Tables that are part of the default Dataverse have the Type designated as Standard, but your own

tables are marked as Custom:

In Dataverse each table contains a default set of columns also defined by the Open Data Initiative. You can

view the definition of a table using the Edit command for that table in the list of tables. You can extend a table

with your own columns, but as before, it’s good practice to use existing columns wherever possible. The

example below shows the default definition of the Account table.

Note: You can modify the display name of tables and columns without changing their names. The display

names are the default labels that appear on forms in Power Apps.

Dataverse supports a rich set of datatypes for columns, ranging from simple text and numeric values, through

to abstractions with specified formatting constraints such as Email, URL, Phone, and Ticker Symbol. Other

types, such as Choice and Lookup, enable you to restrict the values entered in a column to a fixed domain, or

data retrieved from a column in a related table. The File and Image types allow you to store unstructured data

and images in a table. Images have a maximum size of 30 MB, but files can be up to 128 MB.

Note: Power Apps Studio enables you to define your own custom choices for use by Choice columns.

You can also define relationships between tables. These relationships can be many-to-one, one-to-many, or

many-to-many. In addition, you specify the behavior of the related entities as part of the relationship. The

behavior can be:

• Referential, with or without restricted delete. Restricted delete prevents a row in a related table from

being removed if it’s referenced by another row in the same, or a different table.

• Parental, in which case any action performed on a row is also applied to any rows that it references.

• Custom, which enables you to specify how referenced rows are affected by an action performed on the

referencing row.

The example below shows how to add a one-to-many relationship from the Account table to a custom table

named SalesLT Customer. The behavior prevents a customer from being deleted if it’s referenced by a row in

the Account table:

ADDING VIEWS AND BUSINESS RULES

A view provides access to specified columns and rows in one or more related tables. You can think of a view as

being a query but with a name that allows you to treat it as a table. A view contains selected columns from a

table but can include columns from related tables. Additionally, a view can filter rows to only contain rows that

match specified criteria. You can also stipulate the default sort order for the rows presented by a view. Note

that a view provides a dynamic window onto the underlying data; if the data changes in the tables behind a

view, so does the information represented by the view. You can display data through views in model-driven

apps. The following image shows the view designer. The user is adding a new column to a view based on the

Account table.

Business rules enable you to define validations and automate the flow of control when data is added,

modified, or deleted in a table. A business rule comprises a condition that can test for certain conditions in the

affected table, such as whether the data in a column matches or breaks a given rule. The business rules

designer in Power Apps Studio provides a graphical user interface for defining business rules, as illustrated

below.

The business rules designer supports the following actions:

• Set column values.

• Clear column values.

• Set column requirement levels.

• Show or hide columns (for model-driven apps only).

• Enable or disable columns (for model-driven apps only).

• Validate data and show error messages.

• Create business recommendations based on business intelligence (for model-driven apps only).

Note: Business rules are best suited to model-driven apps. Not all business rule actions are supported by

canvas apps.

DEFINING BUSINESS ACTIVITIES

There are two fundamental types of table in Dataverse—Standard tables (including custom tables), which

contain data, and Activity tables, which represent business actions and workflows that can be scheduled to run

by Dataverse. An activity table contains references to the data entities involved in the activity (such as

customers or salespeople), a series of states through which the activity can go, the current state, and other

information used by Dataverse to schedule operations when appropriate.

Dataverse contains built-in activities for managing meetings, scheduling business processes, marketing,

managing the sales process, creating recurring appointments, and handling customer service incidents. You

can find more detail about these built-in activity entities on the Activity entities page at

https://aka.ms/AAbvfzk.

You implement the actual business logic using custom actions, or your own code if you require additional

control not directly available in Power Apps. The details of this process are beyond the scope of this guide, but

for more information, read Create a custom action at https://aka.ms/AAbvfzm.

ADDING GRAPHICAL DISPLAY ELEMENTS

As well as the data structure and logic associated with a business entity, Dataverse can also store layouts for

forms, charts, and dashboards associated with an entity. When you create a model-driven app, you can use

these forms for data entry and display, while the charts and dashboards enable a user to visualize the data

more easily than by looking at basic data values.

https://aka.ms/AAbvfzk
https://aka.ms/AAbvfzm

WHY VANARSDEL DIDN’T USE DATAVERSE

Dataverse is an excellent choice of repository for many situations. You should seriously consider it for Power

Apps development based on new systems and services, especially if you’re creating model-driven apps.

However, VanArsdel’s current operations are heavily dependent on existing legacy systems and databases. For

the time being, VanArsdel want to focus on getting the Power Apps out into the field rather than spend time

migrating to Dataverse. Kiana and Maria, the professional and citizen developers, want to integrate their

existing systems and processes into a Power Apps solution for Caleb, the field technician, as quickly as

possible. They also want to minimize disruption to the critical operations performed by the receptionist Malik,

or compromise the security and IT operations managed by Preeti. To achieve this, they will create a Web API

around their existing systems and connect to this Web API from Power Apps. They can then integrate the Web

API into their canvas app. The following chapters walk through this process.

CHAPTER 5: CREATING AND PUBLISHING A WEB API IN AZURE

Having established that the data for the technicians’ app should be sourced from the existing systems through

a Web API, Maria and Kiana work together to determine exactly which information is needed, and in what

format. Kiana will then create a web app that exposes the appropriate Web API and arrange for it to be hosted

in Azure. The app can connect to Azure from anywhere there is a wireless connection.

DEFINING THE WEB API OPERATIONS: FIELD INVENTORY MANAGEMENT

The Browse screen of the Field Inventory Management section of the app displays a list of parts for boilers and

air conditioning systems (referred to simply as boiler parts). The Details screen enables the technician to view

more information about a selected part.

In the existing inventory database (named InventoryDB), information about parts is held in a single table

named BoilerParts. Kiana determines that the Web API should support the following requests:

• Get all boiler parts.

• Get the details of a part given the part ID.

DEFINING THE WEB API OPERATIONS: FIELD KNOWLEDGEBASE

In the existing system, the knowledge base database (named KnowledgeDB) contains three tables that record

and manage the relationships between tips, engineers, and parts:

• Tips, which contains the details of a tip. Each tip comprises a single line summary identifying a particular

problem (the subject), and a more detailed explanation describing how to solve the problem (the body).

Each tip also references a part, and the engineer who recorded the tip.

• BoilerParts, which contains a list of the parts referenced by tips. The details of the parts themselves are

stored in the BoilerParts table in the InventoryDB database.

• Engineers, which lists the technicians who have authored each tip.

The knowledge base part of the app currently just contains a placeholder Browser screen. Maria wants to

implement the following functionality:

• The technician specifies a search term on the Browse screen to find all matching tips. The match could be

in the name of the part to which the tip refers, the text in the subject or body of the tip, or the name of a

technician who is an expert with a specific piece of equipment.

• When all matching tips have been found, the technician can select a tip to view its details.

• A technician can also add new tips to the knowledge base, as well as add notes and comments to existing

tips.

The knowledge base is large and growing, and querying across multiple tables and columns can involve

complex logic that requires significant compute power. To reduce the load on the Web API, Kiana decides to

use Azure Search to provide the search functionality, as described earlier. To support the app, Kiana decides

that the following operations are required from the Web API:

• Find the details of a specified knowledge base tip from the Tips table.

• Update an existing knowledge base tip in the Tips table.

• Add a new knowledge base tip to the Tips table, which might also involve adding rows to the BoilerParts

and Engineers tables if the specified part or engineer currently have no tips recorded against them. The

routine that actually performs the logic behind adding a new tip will be implemented as an Azure Logic

app called from the app.

DEFINING THE WEB API OPERATIONS: FIELD SCHEDULING

Scheduling technician appointments requires not only querying, adding, and removing appointments, but also

recording information about customers. The existing appointments system records this data in three tables in

the SchedulesDB database:

• Appointments, which contains the details of each appointment, including the date, time, problem, notes,

and technician assigned to the task.

• Customers, which holds the details of each customer, including their name, address, and contact details.

• Engineers, which lists each technician attending appointments.

Note: The database actually contains a fourth table named AppointmentsStatus. This table contains a list

of valid appointment statuses and is simply a lookup used by other parts of the existing appointments

system.

Kiana decides that the following operations would be useful for the Field Scheduling part of the app:

• Find all appointments for a specified technician.

• Find all appointments for the current day for a specified technician.

• Find the next scheduled appointment for a specified technician.

• Update the details of an appointment, such as adding notes and a photograph.

• Find the details of a customer.

BUILDING THE WEB API: FIELD INVENTORY MANAGEMENT

The existing systems store data using Azure SQL Database. Kiana decides to build the Web API using the Entity

Framework Core, because this approach can generate a lot of the code that queries, inserts, and updates data

automatically. The Web API template provided by Microsoft can also create the Swagger descriptions that

describe each operation in the API. These descriptions are useful for testing the API operations. Many tools can

use this information to integrate the API with other services, such as Azure API Management.

Kiana started with the Field Inventory functionality because this is the most straightforward part. The Field

Inventory operations in the Web API query a single table, BoilerParts, in the InventoryDB database. This table

contains the columns shown below:

Kiana took the Code First approach to building the Web API. With this strategy, she:

1. Defined her own C# model class that mirrored the structure of the BoilerParts table in the InventoryDB

database.

2. Created an Entity Framework context class that the Web API uses to connect to the database, to perform

queries.

3. Configured the context class to connect to the InventoryDB database in Azure.

4. Used the Entity Framework command-line tools to generate a Web API controller class that implements

HTTP REST requests for each of the operations that can be performed against the BoilerParts table.

5. Used the Swagger API to test the Web API.

Kiana used the following procedure to create the Web API using .NET 5.0 command-line tools and Visual Studio

Code:

1. Open a terminal window in Visual Studio Code.

2. Run the following command to create a new Web API project named FieldEngineerApi:

dotnet new webapi -o FieldEngineerApi

3. Open the FieldEngineerApi folder:

4. Remove the example WeatherForecastController.cs controller and WeatherForecast.cs class file that was

created by the Web API template:

5. In the Terminal window, add the following Entity Framework packages and tools, together with support

for using SQL Server, to the project:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design

dotnet add package Microsoft.EntityFrameworkCore.Design

dotnet add package Microsoft.AspNetCore.Mvc.NewtonsoftJson

dotnet tool install --global dotnet-ef

dotnet tool install --global dotnet-aspnet-codegenerator

6. In the FieldEngineerApi folder, create a new folder called Models:

7. In the Models folder, create a C# code file named BoilerPart.cs.

8. In this file, add the properties and fields shown below. These properties and fields mirror the structure of

the BoilerParts table in the InventoryDB database:

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace FieldEngineerApi.Models

{

 public class BoilerPart

 {

 [Key]

 public long Id { get; set; }

 public string Name { get; set; }

 public string CategoryId { get; set; }

 [Column(TypeName = "money")]

 public decimal Price { get; set; }

 public string Overview { get; set; }

 public int NumberInStock { get; set; }

 public string ImageUrl { get; set; }

 }

}

9. In the Models folder, create another C# code file named InventoryContext.cs. Add the code shown below

to this class. The class provides the connection between the controller (to be created next), and the

database.

using Microsoft.EntityFrameworkCore;

namespace FieldEngineerApi.Models

{

 public class InventoryContext : DbContext

 {

 public InventoryContext(DbContextOptions<InventoryContext>

options)

 : base(options)

 {

 }

 public DbSet<BoilerPart> BoilerParts { get; set; }

 }

}

10. Edit the appsettings.Development.json file for the project, and add a ConnectionStrings section with the

InventoryDB connection string highlighted in bold below. Replace <server name> with the name of the

Azure SQL Database server you created to hold the InventoryDB database.

{

 "ConnectionStrings": {

 "InventoryDB": "Server=tcp:<server

name>.database.windows.net,1433;Initial Catalog=InventoryDB;Persist

Security Info=False;User

ID=sqladmin;Password=Pa55w.rd;MultipleActiveResultSets=False;Encrypt=Tru

e;TrustServerCertificate=False;Connection Timeout=30;"

 },

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 }

}

Important: For the purposes of this guide only, the connection string contains the user ID and password

for the database. In a production system, you should never store these items in clear text in a

configuration file.

11. Edit the Startup.cs file and add the following using directives to the list at the start of the file:

using FieldEngineerApi.Models;

using Microsoft.EntityFrameworkCore;

12. In the Startup class, find the ConfigureServices method. Add the statement shown in bold below to this

method:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<InventoryContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("InventoryDB")));

 services.AddControllers();

 ...

}

13. Modify the Configure method, and enable the Swagger UI even when the app is running in production

mode, as shown below in bold (this change involves relocating the two app.UseSwagger method calls

outside of the if statement):

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseSwagger();

 app.UseSwaggerUI(c => c.SwaggerEndpoint("/swagger/v1/swagger.json",

"FieldEngineerApi v1"));

 ...

}

Important: This change enables the Swagger endpoint to be exposed for Azure API Management

integration. Once APIM has been configured, you should move this code back inside the if statement and

redeploy the Web API. Never leave the Swagger endpoint open in a production system.

14. In the Terminal window, run the following command to generate the BoilerParts controller from the

BoilerPart model class and the InventoryContext context class:

dotnet aspnet-codegenerator controller ^

 -name BoilerPartsController -async -api ^

 -m BoilerPart -dc InventoryContext -outDir Controllers

The BoilerParts controller should be created in the Controllers folder.

Note: The line terminator character, ^, is only recognized by Windows. If you are running Visual Studio

Code on a Linux system, use the \ character instead.

15. Open the BoilerParts.cs file in the Controllers folder and review its contents. The BoilerPartsController

class exposes the following REST methods:

• GetBoilerParts(), which returns a list of all the BoilerPart objects from the database.

• GetBoilerPart(long id), which retrieves the details of the specified boiler part.

• PutBoilerPart(long id, BoilerPart boilerPart), which updates a boiler part in the database with the

details in the BoilerPart object specified as a parameter.

• PostBoilerPart(BoilerPart boilerPart), which creates a new boiler part.

• DeleteBoilerPart(long id), which removes the specified boiler part from the database.

Note: The technician’s app only requires the two Get methods, but the others are useful for the

desktop inventory management app (not covered in this guide).

16. Compile and build the Web API:

dotnet build

The Web API should build without reporting any errors or warnings.

DEPLOYING THE WEB API TO AZURE: FIELD INVENTORY MANAGEMENT

Kiana deployed and tested the Web API, by performing the following tasks:

1. Using the Azure Account extension in Visual Studio Code, sign in to your Azure subscription.

2. From the Terminal window in Visual Studio Code, create a new resource group called webapi_rg in your

Azure subscription. In the command below, replace <location> with your nearest Azure region:

az group create ^

 --name webapi_rg ^

 --location <location>

3. Create an Azure Appservice Plan to provide the resources for hosting the Web API:

az appservice plan create ^

 --name webapi_plan ^

 --resource-group webapi_rg ^

 --sku F1

Note: F! is the free SKU for Appservice plans. It provides limited throughput and capacity, and is only

suitable for development purposes.

4. Create an Azure Web App using the Appservice Plan. Replace <webapp name> with a unique name for the

web app:

az webapp create ^

 --name <webapp name> ^

 --resource-group webapi_rg ^

 --plan webapi_plan

5. In Visual Studio Code, edit the appSettings.json file, and add the same connection string that you

previously wrote to the appSettings.Development.json file. Remember to replace <server name> with the

name of the Azure SQL Database server you created to hold the InventoryDB database.

{

 "ConnectionStrings": {

 "InventoryDB": "Server=tcp:<server

name>.database.windows.net,1433;Initial Catalog=InventoryDB;Persist

Security Info=False;User

ID=sqladmin;Password=Pa55w.rd;MultipleActiveResultSets=False;Encrypt=Tru

e;TrustServerCertificate=False;Connection Timeout=30;"

 },

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*"

}

6. In the Terminal window, package the Web API ready for deployment to Azure:

dotnet publish -c Release -o ./publish

This command saves the packaged files to a folder named publish.

7. In Visual Studio Code, right-click the publish folder, and then select Deploy to Web App:

8. Select the name of the web app you created in Step 4 above (<webapp name>). In the example below, the

web app is called my-fieldengineer-webapp:

9. At the prompt in the Visual Studio Code dialog box, select Deploy to accept the warning and deploy the

web app:

10. Verify that the web app deploys successfully, and then browse to the website:

11. The website will open in a new browser window, but will display an HTTP 404 error (not found). This is

because the Web API operations are available through the api endpoint rather than the root of the

website. Change the URL to https://<webapp name>.azurewebsites.net/api/BoilerParts. This URI invokes

the GetBoilerParts method in the BoilerParts controller. The Web API should respond with a JSON

document that lists all the boiler parts in the InventoryDB database:

12. Change the URL in the browser to https://<webapp name>.azurewebsites.net/swagger. The Swagger API

should appear. This is a graphical user interface that enables a developer to verify and test each of the

operations in a Web API. It also acts as a useful documentation tool:

13. Select GET adjacent to the /api/BoilerParts/{id} endpoint, and then select Try it out.

14. In the id field, enter the ID of a part, and then select Execute. This action calls the GetBoilerPart(long id)

method in the BoilerParts controller. It’ll return a JSON document with the details of the part, or an HTTP

404 error if no matching part is found in the database:

15. Close the web browser and return to Visual Studio Code.

BUILDING AND DEPLOYING THE WEB API: FIELD KNOWLEDGEBASE

The Field Knowledgebase operations in the Web API work on three tables in the KnowledgeDB database: Tips,

BoilerParts, and Engineers. The diagram below shows the relationships between these tables and the columns

they contain:

Kiana adopted a similar approach for the Field Knowledgebase database that she used for the Field Inventory

Management database. She performed the following tasks:

1. Create C# model classes that mirror the structure of the Tips, BoilerParts, and Engineers table in the

KnowledgeDB database. The code for each of these classes is shown below:

Note: The BoilerParts table in the KnowledgeDB database is distinct from the BoilerParts table in the

InventoryDB database. To avoid a name clash, the model classes for tables in the KnowledgeDB database

have the KnowledgeBase prefix.

// KnowledgeBaseTips.cs

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class KnowledgeBaseTip {

 [Key]

 public long Id { get; set; }

 public long KnowledgeBaseBoilerPartId { get; set; }

 public virtual KnowledgeBaseBoilerPart KnowledgeBaseBoilerPart

{ get; set; }

 public string KnowledgeBaseEngineerId { get; set; }

 public virtual KnowledgeBaseEngineer KnowledgeBaseEngineer

{ get; set; }

 public string Subject { get; set; }

 public string Body { get; set; }

 }

}

Note: The engineer Id is a string, not a number. This is because the existing systems use GUIDs to identity

technicians and other users.

// KnowledgeBaseBoilerPart.cs

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class KnowledgeBaseBoilerPart

 {

 [Key]

 public long Id { get; set; }

 public string Name { get; set; }

 public string Overview { get; set; }

 public virtual ICollection<KnowledgeBaseTip> KnowledgeBaseTips

{ get; set; }

 }

}

// KnowledgeBaseEngineer.cs

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class KnowledgeBaseEngineer

 {

 [Key]

 public string Id { get; set; }

 [Required]

 public string Name { get; set; }

 public string ContactNumber { get; set; }

 public virtual ICollection<KnowledgeBaseTip> KnowledgeBaseTips

{ get; set; }

 }

}

2. Create another Entity Framework context class that the Web API uses to connect to the KnowledgeDB

database:

// KnowledgeBaseContext.cs

using Microsoft.EntityFrameworkCore;

namespace FieldEngineerApi.Models

{

 public class KnowledgeBaseContext : DbContext

 {

 public

KnowledgeBaseContext(DbContextOptions<KnowledgeBaseContext> options)

 : base(options)

 {

 }

 public DbSet<KnowledgeBaseBoilerPart> BoilerParts { get; set; }

 public DbSet<KnowledgeBaseEngineer> Engineers { get; set; }

 public DbSet<KnowledgeBaseTip> Tips { get; set; }

 }

}

3. Edit the appsettings.Development.json file for the project, and add the KnowledgDB connection string

highlighted in bold below to the ConnectionStrings section. Replace <server name> with the name of the

Azure SQL Database server you created to hold the KnowledgeDB database.

{

 "ConnectionStrings": {

 "InventoryDB": "Server=tcp:...",

 "KnowledgeDB": "Server=tcp:<server

name>.database.windows.net,1433;Initial Catalog=KnowledgeDB;Persist

Security Info=False;User

ID=sqladmin;Password=Pa55w.rd;MultipleActiveResultSets=False;Encrypt=Tru

e;TrustServerCertificate=False;Connection Timeout=30;"

 },

 "Logging": {

 ...

 }

 }

}

Important: For the purposes of this guide only, the connection string contains the user ID and password

for the database. In a production system, you should never store these items in clear text in a

configuration file.

4. Edit the Startup.cs file and, in the ConfigureServices method, add the statements shown in bold below:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<InventoryContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("InventoryDB")));

 services.AddDbContext<KnowledgeBaseContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("KnowledgeDB")));

 services.AddControllers().AddNewtonsoftJson(

 options => options.SerializerSettings.ReferenceLoopHandling =

Newtonsoft.Json.ReferenceLoopHandling.Ignore

);

 services.AddControllers();

 ...

}

The second statement controls the way in which data is serialized when it s retrieved. Some of the model

classes have references to other model classes, which in turn can reference further model classes. Some

of these references can result in recursive loops (Entity A references Entity B, which references back to

Entity A, which references Entity B again, and so on). The ReferenceLoopHandling option causes the

serializer to ignore such loops in the data, and only return an entity and the objects that it immediately

references, but no more.

5. In the Terminal window, run the following command to generate controllers from the

KnowledgeBaseBoilerTip, KnowledgeBaseBoilerPart, and KnowledgeBaseEngineer model classes and

the KnowledgeBaseContext context class:

dotnet aspnet-codegenerator controller ^

 -name KnowledgeBaseTipController -async -api ^

 -m KnowledgeBaseTip ^

 -dc KnowledgeBaseContext -outDir Controllers

dotnet aspnet-codegenerator controller ^

 -name KnowledgeBaseBoilerPartController -async -api ^

 -m KnowledgeBaseBoilerPart ^

 -dc KnowledgeBaseContext -outDir Controllers

dotnet aspnet-codegenerator controller ^

 -name KnowledgeBaseEngineerController -async -api ^

 -m KnowledgeBaseEngineer ^

 -dc KnowledgeBaseContext -outDir Controllers

All three controllers should be created in the Controllers folder.

6. Edit the KnowledgeBaseBoilerPartController.cs file. This file contains the code for the

KnowledgeBaseBoilerPart controller. It should follow the same pattern as the BoilerPartsController class

created earlier, exposing REST methods that enable a client to list, query, insert, update, and delete

entities. Add the GetTipsForPart method shown below in bold to the controller:

[Route("api/[controller]")]

[ApiController]

public class KnowledgeBaseBoilerPartController : ControllerBase

{

 private readonly KnowledgeBaseContext _context;

 public KnowledgeBaseBoilerPartController(KnowledgeBaseContext

context)

 {

 _context = context;

 }

 // GET: api/KnowledgeBaseBoilerPart/5/Tips

 [HttpGet("{id}/Tips")]

 public async Task<ActionResult<IEnumerable<KnowledgeBaseTip>>>

GetTipsForPart(long id)

 {

 return await _context.Tips.Where(

 t => t.KnowledgeBaseBoilerPartId == id).ToListAsync();

 }

 ...

}

This method returns all the knowledge base tips that reference a specified part. It queries the Tips table in

the database through the KnowledgeBaseContext object to find this information.

7. Edit the KnowledgeBaseEngineerController.cs file and add the method shown below in bold to the

KnowledgeBaseEngineerController class:

[Route("api/[controller]")]

[ApiController]

public class KnowledgeBaseEngineerController : ControllerBase

{

 private readonly KnowledgeBaseContext _context;

 public KnowledgeBaseEngineerController(KnowledgeBaseContext context)

 {

 _context = context;

 }

 // GET: api/KnowledgeBaseEngineer/5/Tips

 [HttpGet("{id}/Tips")]

 public async Task<ActionResult<IEnumerable<KnowledgeBaseTip>>>

GetTipsForEngineer(string id)

 {

 return await _context.Tips.Where(

 t => t.KnowledgeBaseEngineerId == id).ToListAsync();

 }

 ...

}

The GetTipsForEngineer method finds all knowledge base tips posted by the specified engineer.

8. In the Terminal window, compile and build the Web API:

dotnet build

The Web API should build without reporting any errors or warnings.

9. Edit the appSettings.json file and add the connection string for the KnowledgeDB database. This string

should be the same that you previously wrote to the appSettings.Development.json file:

{

 "ConnectionStrings": {

 "InventoryDB": ...,

 "KnowledgeDB": "Server=tcp:<server

name>.database.windows.net,1433;Initial Catalog=KnowledgeDB;Persist

Security Info=False;User

ID=sqladmin;Password=Pa55w.rd;MultipleActiveResultSets=False;Encrypt=Tru

e;TrustServerCertificate=False;Connection Timeout=30;"

 },

 "Logging": {

 ...

 },

 "AllowedHosts": "*"

}

10. In the Terminal window, package the Web API ready for deployment to Azure:

dotnet publish -c Release -o ./publish

11. In Visual Studio Code, right-click the publish folder, and then select Deploy to Web App. Deploy to the

same Azure Web app that you created previously. Allow the wizard to overwrite the existing web app with

the new code.

12. When deployment is complete, browse to the website but change the URL in the browser to

https://<webapp name>.azurewebsites.net/swagger. The operations for the KnowledgeBaseBoilerPart,

KnowledgeBaseEngineer, and KnowldgeBaseTip controllers should be listed, as well as the existing

BoilerParts operations. Verify that the KnowledgeBaseBoilerPart operations include a GET operation for

the URI /api/KnowledgeBaseBoilerPart/{id}/Tips, and the KnowledgeBaseEngineer operations include a

GET operation for the URI /api/KnowledgeBaseEngineer/{id}/Tips:

BUILDING AND DEPLOYING THE WEB API: FIELD SCHEDULING

The Field Scheduling operations use the tables Appointments, AppointmentStatuses (this is a simple lookup

table that lists the valid appointment status values), Customers, and Engineers, shown in the diagram below.

These tables are stored in the SchedulesDB database:

To create the Web API operations for the Field Scheduling part of the system, Kiana performed the following

tasks:

1. Create C# model classes that mirror the structure of the AppointmentStatus, Appointments, Customers,

and Engineers table in the SchedulesDB database. The code for each of these classes is shown below:

Note: The model class for Engineers table is named ScheduleEngineer to distinguish it from the model for

the Engineers table in the InventoryDB database.

// AppointmentStatus.cs

using Newtonsoft.Json;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class AppointmentStatus {

 [Key]

 public long Id { get; set; }

 public string StatusName { get; set; }

 [JsonIgnore]

 public virtual ICollection<Appointment> Appointments { get;

set; }

 }

}

// Appointment.cs

using System;

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class Appointment

 {

 [Key]

 public long Id { get; set; }

 [Required]

 public long CustomerId { get; set; }

 public virtual Customer Customer { get; set; }

 public string ProblemDetails { get; set; }

 [Required]

 public long AppointmentStatusId { get; set; }

 public virtual AppointmentStatus AppointmentStatus { get; set; }

 public string EngineerId { get; set; }

 public virtual ScheduleEngineer Engineer { get ; set; }

 [Display(Name = "StartTime")]

 [DataType(DataType.DateTime)]

 [DisplayFormat(DataFormatString = "{0:MM/dd/yyyy H:mm:ss}")]

 public DateTime StartDateTime { get; set; }

 public string Notes { get; set; }

 public string ImageUrl { get; set; }

 }

}

// Customer.cs

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class Customer

 {

 [Key]

 public long Id { get; set; }

 [Required]

 public string Name { get; set; }

 public string Address { get; set; }

 public string ContactNumber { get; set; }

 public virtual ICollection<Appointment> Appointments { get;

set; }

 }

}

// ScheduleEngineer.cs

using Newtonsoft.Json;

using System.ComponentModel.DataAnnotations;

using System.Collections.Generic;

namespace FieldEngineerApi.Models

{

 public class ScheduleEngineer

 {

 [Key]

 public string Id { get; set; }

 [Required]

 public string Name { get; set; }

 public string ContactNumber { get; set; }

 [JsonIgnore]

 public virtual ICollection<Appointment> Appointments { get;

set; }

 }

}

2. Create an Entity Framework context class that the Web API uses to connect to the SchedulesDB database:

// ScheduleContext.cs

using System;

using Microsoft.EntityFrameworkCore;

namespace FieldEngineerApi.Models

{

 public class ScheduleContext : DbContext

 {

 public ScheduleContext(DbContextOptions<ScheduleContext>

options)

 : base(options)

 {

 }

 public DbSet<Appointment> Appointments { get; set; }

 public DbSet<AppointmentStatus> AppointmentStatuses { get;

set; }

 public DbSet<Customer> Customers { get; set; }

 public DbSet<ScheduleEngineer> Engineers { get; set; }

 }

}

3. Edit the appsettings.Development.json file for the project, and add the SchedulesDB connection string

highlighted in bold below to the ConnectionStrings section. Replace <server name> with the name of the

Azure SQL Database server you created to hold the KnowledgeDB database.

{

 "ConnectionStrings": {

 "InventoryDB": "Server=tcp:...",

 "KnowledgeDB": "Server=tcp;... ",

 "SchedulesDB": "Server=tcp:<server

name>.database.windows.net,1433;Initial Catalog=SchedulesDB;Persist

Security Info=False;User

ID=sqladmin;Password=Pa55w.rd;MultipleActiveResultSets=False;Encrypt=Tru

e;TrustServerCertificate=False;Connection Timeout=30;"

 },

 "Logging": {

 ...

 }

 }

}

Important: For the purposes of this guide only, the connection string contains the user ID and password

for the database. In a production system, you should never store these items in clear text in a

configuration file.

4. Edit the Startup.cs file and in the ConfigureServices method, add the statement shown in bold below:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<InventoryContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("InventoryDB")));

 services.AddDbContext<KnowledgeBaseContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("KnowledgeDB")));

 services.AddDbContext<ScheduleContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("SchedulesDB")));

 services.AddControllers().AddNewtonsoftJson(

 options => options.SerializerSettings.ReferenceLoopHandling =

Newtonsoft.Json.ReferenceLoopHandling.Ignore

);

 services.AddControllers();

 ...

}

5. In the Terminal window, run the following command to generate controllers from the Appointment,

Customer and ScheduleEngineer model classes, and the ScheduleContext context class:

Note: Don’t create a separate controller for the AppointmentStatus model.

dotnet aspnet-codegenerator controller ^

 -name AppointmentsController -async -api ^

 -m Appointment ^

 -dc ScheduleContext -outDir Controllers

dotnet aspnet-codegenerator controller ^

 -name CustomerController -async -api ^

 -m Customer ^

 -dc ScheduleContext -outDir Controllers

dotnet aspnet-codegenerator controller ^

 -name ScheduleEngineerController -async -api ^

 -m ScheduleEngineer ^

 -dc ScheduleContext -outDir Controllers

6. Edit the AppointmentsController.cs file. In the AppointmentsController class, find the GetAppointments

method. Modify the return statement as shown below. This change ensures that the Customer, Engineer,

and AppointmentStatus information is retrieved as part of the GET operation; these fields reference other

entities that would otherwise be left null due to the lazy loading mechanism of the Entity Framework.

public class AppointmentsController : ControllerBase

{

 private readonly ScheduleContext _context;

 public AppointmentsController(ScheduleContext context)

 {

 _context = context;

 }

 // GET: api/Appointments

 [HttpGet]

 public async Task<ActionResult<IEnumerable<Appointment>>>

GetAppointments()

 {

 return await _context.Appointments

 .Include(c => c.Customer)

 .Include(e => e.Engineer)

 .Include(s => s.AppointmentStatus)

 .ToListAsync();

 }

 ...

}

7. In the same file, modify the GetAppointment(long id) method as shown below:

// GET: api/Appointments/5

[HttpGet("{id}")]

public async Task<ActionResult<Appointment>> GetAppointment(long id)

{

 var appointment = _context.Appointments

 .Where(a => a.Id == id)

 .Include(c => c.Customer)

 .Include(e => e.Engineer)

 .Include(s => s.AppointmentStatus);

 var appData = await appointment.FirstOrDefaultAsync();

 if (appData == null)

 {

 return NotFound();

 }

 return appData;

}

This version of the method populates the Customer, Engineer, and AppointmentStatus fields of an

appointment when it is retrieved (lazy loading will leave these fields empty otherwise).

8. Find the PutAppointment method, and replace it with the code shown below:

This version of the PutAppointment method takes the fields in an appointment that a user can modify in

the app rather than a complete Appointment object:

[HttpPut("{id}")]

public async Task<IActionResult> PutAppointment(long id,

 string problemDetails, string statusName,

 string notes, string imageUrl)

{

 var statusId = _context.AppointmentStatuses.First(s => s.StatusName

== statusName).Id;

 var appointment = _context.Appointments.First(e => e.Id == id);

 if (appointment == null)

 {

 return BadRequest();

 }

 appointment.ProblemDetails = problemDetails;

 appointment.AppointmentStatusId = statusId;

 appointment.Notes = notes;

 appointment.ImageUrl = imageUrl;

 _context.Entry(appointment).State = EntityState.Modified;

 try

 {

 await _context.SaveChangesAsync();

 }

 catch (DbUpdateConcurrencyException)

 {

 if (!AppointmentExists(id))

 {

 return NotFound();

 }

 else

 {

 throw;

 }

 }

 return NoContent();

}

Note: As a general rule, PUT operations should only modify data that a user should be allowed to update,

not necessarily every field in an entity.

9. Open the ScheduleEngineerController.cs file and add the GetScheduleEngineerAppointments method

highlighted below to the ScheduleEngineerController class:

[Route("api/[controller]")]

[ApiController]

public class ScheduleEngineerController : ControllerBase

{

 private readonly ScheduleContext _context;

 public ScheduleEngineerController(ScheduleContext context)

 {

 _context = context;

 }

 // GET: api/ScheduleEngineer/5/Appointments

 [HttpGet("{id}/Appointments")]

 public async Task<ActionResult<IEnumerable<Appointment>>>

GetScheduleEngineerAppointments(string id)

 {

 return await _context.Appointments

 .Where(a => a.EngineerId == id)

 .OrderByDescending(a => a.StartDateTime)

 .Include(c => c.Customer)

 .Include(e => e.Engineer)

 .Include(s => s.AppointmentStatus)

 .ToListAsync();

 }

 ...

}

These methods retrieve the appointments for the specified technician.

10. Edit the CustomerController.cs file and add the GetAppointments and GetNotes methods, highlighted

below, to the CustomerController class:

[Route("api/[controller]")]

[ApiController]

public class CustomerController : ControllerBase

{

 private readonly ScheduleContext _context;

 public CustomerController(ScheduleContext context)

 {

 _context = context;

 }

 //GET: api/Customers/5/Appointments

 [HttpGet("{id}/Appointments")]

 public async Task<ActionResult<IEnumerable<Appointment>>>

GetAppointments(long id)

 {

 return await _context.Appointments

 .Where(a => a.CustomerId == id)

 .OrderByDescending(a => a.StartDateTime)

 .ToListAsync();

 }

 //GET: api/Customers/5/Notes

 [HttpGet("{id}/Notes")]

 public async Task<ActionResult<IEnumerable<object>>> GetNotes(long

id)

 {

 return await _context.Appointments

 .Where(a => a.CustomerId == id)

 .OrderByDescending(a => a.StartDateTime)

 .Select(a =>

 new {a.StartDateTime, a.ProblemDetails, a.Notes})

 .ToListAsync();

 }

 ...

}

The GetAppointments method finds all appointments for the specified customer. The GetNotes method

retrieves all the technician’s notes made on previous visits to the customer.

11. Edit the appSettings.json file and add the connection string for the KnowledgeDB database. This string

should be the same that you previously wrote to the appSettings.Development.json file:

{

 "ConnectionStrings": {

 "InventoryDB": ...,

 "KnowledgeDB": ...,

 "SchedulesDB": "Server=tcp:<server

name>.database.windows.net,1433;Initial Catalog=SchedulesDB;Persist

Security Info=False;User

ID=sqladmin;Password=Pa55w.rd;MultipleActiveResultSets=False;Encrypt=Tru

e;TrustServerCertificate=False;Connection Timeout=30;"

 },

 "Logging": {

 ...

 },

 "AllowedHosts": "*"

}

12. In the Terminal window, compile and build the Web API:

dotnet build

The Web API should build without reporting any errors or warnings.

13. In the Terminal window, package the Web API ready for deployment to Azure:

dotnet publish -c Release -o ./publish

14. In Visual Studio Code, right-click the publish folder, and then select Deploy to Web App. Deploy to the

same Azure Web app that you created previously. Allow the wizard to overwrite the existing web app with

the new code.

13. When deployment is complete, browse to the website but change the URL in the browser to

https://<webapp name>.azurewebsites.net/swagger. Verify that the operations for the Appointments,

Customer, and ScheduleEngineer controllers are now available.

The Web API is now ready to be incorporated into the app.

CHAPTER 6: USING THE WEB API IN POWER APPS

Maria and Kiana are ready to combine the app with the Web API. However, before proceeding, they decide to

consult with Preeti, the IT Operations Manager.

UNDERSTANDING THE IT OPERATIONS MANAGEMENT REQUIREMENTS FOR THE WEB API

Preeti is concerned that the app and the Web API must be secure because they provide access to sensitive

data stored in the various databases. She wants assurances that she will be able to include authentication and

authorization, to prevent unwarranted access to information. Preeti is also aware that the company is rapidly

expanding, and the volume of data involved in managing customers, appointments, parts, and the knowledge

base is likely to increase exponentially in the near term. Consequently, she wants the solution to be scalable.

Kiana explains to Preeti that the Web API is currently implemented as an Azure App Service. This service

supports a number of authentication providers, which Preeti can configure using the Azure portal. Preeti is

especially interested in Azure Active Directory because VanArsdel are looking to roll out this form of

authentication to many of their other corporate systems in the near future:

Azure App Service also provides horizontal and vertical scalability. If needed, Preeti can scale up the resources

available to the Web API by upgrading the App Service Plan for the web app:

She can also arrange for the system to scale out by configuring autoscaling. Azure App Service enables an

operations manager to define autoscale rules that determine the conditions under which the system should

scale out across more instances when the load increases, or back in again as demand drops. She can also

configure pre-emptive autoscaling to occur according to a schedule:

A key part of the role of an IT Operations Manager is to have an eye for how systems might evolve, and to

ensure that the underlying support structures will handle future expansion and changes. Preeti knows that the

Web API developed by Kiana might be extended, and reused by other VanArsdel systems in the future. She

needs to be able to manage and control the way in which developers request use of the Web API, protect it as

a valuable resource, and monitor its use. Therefore Preeti decides to protect the Web API behind the Azure API

Management service (APIM).

APIM provides an extra layer of security to a Web API, as well as enabling detailed monitoring and control over

which clients can access which operations. Using APIM, Preeti can manage resource utilization, and throttle

the performance of low priority clients to ensure that critical higher priority apps are serviced more quickly.

Note: For more details on the services that APIM provides, read About API Management at

https://aka.ms/AAbvfzn.

CREATING AN AZURE API MANAGEMENT SERVICE

Preeti created the API Management service through the Azure portal, using the following steps:

1. Sign in to the Azure portal and, on the Home page, select Create a resource.

2. In the Search the MarketPlace text box, enter API Management, and press Enter.

3. On the API Management page, select Create.

https://aka.ms/AAbvfzn

4. On the Create API Management page, enter the following values, and then select Review + create:

• Subscription: Select your subscription

• Resource group: webapi_rg (this is the same resource group that you created for the App Service)

• Region: Select your nearest region

• Resource name: Enter a unique name for the service

• Organization name: VanArsdel

• Administrator email: itadmin@vanarsdel.com

• Pricing tier: Developer (no SLA)

Note: Don’t use the Developer pricing tier for a production system.

5. On the validation page, select Create, and wait while the API Management service is created.

Note: It can take 30 minutes or more for the API Management service to be provisioned, so be patient.

PUBLISHING THE WEB API THROUGH APIM

After the APIM service was created, Preeti published the Web API to make it accessible to other services and

applications. She used the following steps:

1. In the Azure portal, go to the APIM service.

2. On the API Management service page, in the left pane, under APIs, select APIs:

3. In the Add a new API pane, select OpenAPI:

4. In the Create from OpenAPI specification dialog box, enter the following values, and then select Create:

• OpenAPI specification: https://<webapp name>.azurewebsites.net/swagger/v1/swagger.json,

where <webapp name> is the name of the App Service hosting your Web API

• Display name: Field Engineer API

• Name: field-engineer-api

• API URL suffix: Leave empty

• Base URL: Use the default URL

5. When the Field Engineer API has been created, select the Settings tab for the API, set the Web Service

URL to https://<webapp name>.azurewebsites.net, and then select Save:

6. On the Test tab, select the GET api/Appointments URI, and then select Send:

7. Verify that the request is successful (the HTTP return code is 200 OK), and that it returns a result

containing a list of appointments in the response body:

CONNECTING TO APIM FROM THE APP

Kiana and Maria can now work together to connect the app to the Web API through the APIM service.

The first task is to create a custom connector that’s used by the app to communicate with APIM. This involves

exporting the API to the Power Apps environment used to create the app, which Kiana does as follows:

1. In the Azure portal, go to the page for the APIM service that Preeti created.

2. In the left pane, under APIs, select APIs.

3. Click the ellipsis button for the Field Engineer Api, and then select Export:

4. In the Export API pane, select Power Apps and Power Automate:

5. In the Export API to PowerApps pane, select the PowerApps environment in which you created the

prototype app (Maria in the image shown below), and then select Export:

6. After the API has been exported, select the Field Engineer API. On the Settings page, scroll down to the

Subscriptions section, clear Subscription required, and then select Save:

The prototype app used Excel spreadsheets for the data sources. Now the custom connector for the Web API is

available, Maria performs the following steps to add the connector to the app:

1. Sign in to Power Apps Studio at http://make.powerapps.com.

2. In the left pane, expand Data, and select Custom Connectors. The field-engineer-api custom connector

should be listed. Select Create connection:

http://make.powerapps.com/

3. In the field-engineer-api dialog box, select Create:

4. When the connection has been created, verify that it appears in the list of available connections:

5. In the left pane, select Apps, select VanArsdelApp, and then select Edit:

6. In the left pane, select the Data tab. Select Add data, select the ellipsis button for Connectors, and then

select Refresh:

7. In the list of connectors, select the field-engineer-api connector:

8. In the field-engineer-api dialog box, select the field-engineer-api connector:

9. In the Data pane, verify that the FieldEngineerApi connector is listed:

UPDATING THE APP TO USE THE CONNECTOR: FIELD INVENTORY MANAGEMENT

Now that the connection has been added to the app, Maria can modify the screens to use it to replace the

Excel spreadsheets. This involves working through each screen methodically and changing the data source. No

other changes should be necessary. She starts with the BrowseParts and PartDetails screens:

1. On the Home screen of the app, select the Parts button. Set the OnSelect action property to the following

formula:

ClearCollect(partsCollection, FieldEngineerAPI.getapiboilerparts());

Navigate(BrowseParts, ScreenTransition.Fade)

The ClearCollect function creates a new collection named partsCollection, and populates it with the data

that results from calling the getboilerparts operation in the FieldEngineerAPI connection.

Note: It’s good practice to retrieve the data into a collection and reference that collection from any

screens that need the information. This approach can save different screens from repeatedly running the

same query and fetching the same data.

2. Press F5 to preview the app.

3. On the Home screen, select Parts. This action will create the partsCollection collection. Close the preview

window and return to Power Apps Studio.

Note: The purpose of this step is to enable you to see the data while you edit the BrowseParts screen in

the following steps.

4. Select the BrowseGallery1 control in the BrowseParts screen. In the formula for the Items property,

replace the reference to the [@Table1] data source to partsCollection.

This change will result in some errors. This is because the field names in the original Excel spreadsheet

used capitalization (Name, CategoryID, and Overview), whereas the properties returned in the body of

the Web API response are named in lowercase. Change these references to use lowercase. The formula

should look like this:

SortByColumns(Search(FieldEngineerApi.getapiboilerparts(),

TextSearchBox1.Text, "name", "categoryId", "overview"), "name",

If(SortDescending1, Descending, Ascending))

5. In the Tree view pane, select the IconRefresh1 control. Change the OnSelect action to the formula

ClearCollect(partsCollection, FieldEngineerAPI.getapiboilerparts()).

Note: The original formula for this action calls the Refresh function to repopulate the data using the

connection to the original data source. You can’t use Refresh with a connection that runs a function to

retrieve the data, so it won’t work with FieldEngineerApi.getapiboilerparts(). The solution in this step

repopulates the partsCollection collection with the latest data.

6. In the Tree view pane, expand the BrowseGallery1 control, and select the Body1 control. Change the Text

property to ThisItem.overview.

7. In the Tree view pane, select the Subtitle1 control. Change the Text property to ThisItem.categoryId.

8. In the Tree view pane, select the Title control. Change the Text property to ThisItem.name.

9. In the Tree view pane, select the DetailForm1 control in the PartDetails screen. Change the DataSource

property from [@Table1] to partsCollection.

10. In the Tree view pane, select the Name_DataCard1 control under DetailForm1. Change the Default

property to ThisItem.name.

11. Change the Default property of the CategoryID_DataCard1 control to ThisItem.categoryId.

12. Change the Default property of the Overview_DataCard1 control to ThisItem.overview.

13. Change the Default property of the Price_DataCard1 control to ThisItem.price.

14. Change the Default property of the NumberInStock_DataCard1 control to ThisItem.numberInStock.

15. Change the Default property of the Image_DataCard1 control to ThisItem.imageUrl.

16. In the left pane, on the Data tab, right-click the Table1 data connection, and then select Remove to delete

it from the app. This connection is no longer required.

17. Save the app.

Note: You can quickly save the app without using the File menu by pressing Ctrl + S

18. Press F5 to preview the app. The Browse Parts and Part Details screens should operate exactly as before,

except this time they are retrieving data from the InventoryDB Azure SQL database through the Web API,

rather than from a local spreadsheet.

19. Close the preview window and return to Power Apps Studio.

UPDATING THE APP TO USE THE CONNECTOR: FIELD SCHEDULING AND NOTES

Maria continues with the BrowseAppointments, AppointmentDetails, and EditAppointment screens. The data

presented by these screens currently originates from the Appointments table in another Excel spreadsheet.

1. On the Home screen of the app, set the OnVisible action to the following formula:

ClearCollect(appointmentsCollection,

Sort(Filter(FieldEngineerAPI.getapiappointments(), DateDiff(Today(),

startDateTime) >= 0), startDateTime))

This formula retrieves appointments data into the appointmentsCollection collection. The appointments

are filtered to retrieve visits scheduled on or after the current date.

2. Select the label control that displays the time of the next appointment. Set the Text property to

Text(First(appointmentsCollection).startDateTime, ShortTime24).

3. Select the label control that displays the date for the next appointment. Set the Text property to

Text(First(appointmentsCollection).startDateTime, LongDate).

4. Select the label control that displays the date for the next appointment. Set the Text property to

First(appointmentsCollection).customer.name.

5. Press F5 to preview the app. On the Home screen, select Appointments. This action will create the

appointmentsCollection collection. Close the preview window and return to Power Apps Studio.

6. In the Tree view pane, select the BrowseAppointmentsGallery control in the BrowseAppointments

screen. Change the formula in the Items property to the formula shown below:

Sort(Filter(appointmentsCollection, StartsWith(customer.name,

TextSearchBox1_1.Text)), startDateTime)

This formula filters the data displayed on the screen by customer name, enabling the user to enter the

name of a customer. The appointments are displayed in date and time order.

7. In the Tree view pane, expand the BrowseAppointmentsGallery control, and select the Title1_1 control.

Change the Text property to:

Text(ThisItem.startDateTime, LongDate)

This formula displays the date part of the startDateTime field for the appointment.

8. In the Tree view pane, expand the BrowseAppointmentsGallery control, and select the Subtitle1_1

control. Change the Text property to:

Text(ThisItem.startDateTime, ShortTime24)

This formula displays the time element of the startDateTime field.

9. In the Tree view pane, expand the BrowseAppointmentsGallery control, and select the Body1_1 control.

Change the Text property to:

ThisItem.customer.name

10. In the Tree view pane, select the IconRefresh1_1 control on the BrowseAppointments screen. Set the

OnSelect action to the following formula:

ClearCollect(appointmentsCollection,

Sort(Filter(FieldEngineerAPI.getapiappointments(), DateDiff(Today(),

startDateTime) >= 0), startDateTime));

11. In the Tree view pane, expand the AppointmentDetails screen, and select the DetailForm1_1 control. Set

the DataSource property to appointmentsCollection.

12. In the Tree view pane, select the IconEdit1 control. Modify the formula in the DisplayMode property to

test the appoinmentsCollection collection:

If(DataSourceInfo(appointmentsCollection,

DataSourceInfo.EditPermission), DisplayMode.Edit, DisplayMode.Disabled)

13. In the Tree view pane, expand the DetailForm1_1 screen, and select the Customer Name_DataCard1

control. Change the Default property to ThisItem.customer.name.

14. Change the Default properties of the remaining data cards as follows:

• Customer Address_DataCard1: ThisItem.customer.address

• Contact Number_DataCard1: ThisItem.customer.contactNumber

• Problem Details_DataCard1: ThisItem.problemDetails

• Status_DataCard1: ThisItem.appointmentStatus.statusName

• Notes_DataCard1: ThisItem.notes

• Image_DataCard1_1: ThisItem.imageUrl

15. In the Tree view pane, expand the EditAppointment screen, and select the EditForm1 control. Set the

DataSource property to appointmentsCollection.

16. In the Tree view pane, expand the EditForm1 control, and select the Customer Name_DataCard3 control.

Change the Default property to ThisItem.customer.name.

17. Change the Default properties of the remaining data cards as follows:

• Contact Number_DataCard2: ThisItem.customer.contactNumber; additionally, change the

MaxLength property to 20

• Problem Details_DataCard2: ThisItem.problemDetails

• Status_DataCard5: ThisItem.appointmentStatus.statusName

• Notes_DataCard3: ThisItem.notes

• Image_DataCard2: ThisItem.imageUrl

18. In the Tree view pane, expand the Problem Details_Card2 control. Rename the DataCardValueX (X will be

a number) field under this control to ProblemDetailsValue. Repeat this process for the DataCardValueX

controls in the following data cards:

• Status_DataCard5: StatusValue

• Notes_DataCard3: NotesValue

Note: The Image control will be addressed in the next chapter.

19. Select the ProblemDetailsValue, and set the MaxLength property to 100.

20. In the Tree view pane, select the IconAccept1 control on the EditAppointment screen. Set the OnSelect

action property to the following formula:

FieldEngineerAPI.putapiappointmentsid(BrowseAppointmentsGallery.Selected

.id, {problemDetails:ProblemDetailsValue.Text,

statusName:StatusValue.Selected.Value, notes:NotesValue.Text,

imageUrl:""});

Remove(appointmentsCollection, First(Filter(appointmentsCollection,

id=BrowseAppointmentsGallery.Selected.id)));

Set(appointmentRec,

FieldEngineerAPI.getapiappointmentsid(BrowseAppointmentsGallery.Selected

.id));

Collect(appointmentsCollection, appointmentRec);

Navigate(AppointmentDetails, ScreenTransition.None);

This formula calls the PUT operation for the Appointments controller in the Web API. It passes the

appointment ID for the current appointment as the first parameter, followed by the details that the user

might have modified on the screen. The details are passed as a JSON object. The Remove, Set, and Collect

statements update the appointmentsCollection collection with the data saved to the database.

Note: Don’t use the ClearCollect function to delete and refresh the entire collection in situations such as

this because it’s wasteful if, for example, only one record has changed.

21. In the Tree view pane, select the IconAccept1 control on the EditAppointment screen. Set the OnSelect

action property to:

ResetForm(EditForm1);

Navigate(AppointmentDetails, ScreenTransition.None);

22. In the left pane, on the Data tab, right-click the Appointments data connection, and then select Remove

to delete it from the app.

23. Save the app.

24. Press F5 to preview the app. From the Home screen, go to the Appointments screen, select and edit an

appointment, then save the changes. Verify that the appointment is updated.

25. Close the preview window and return to Power Apps Studio.

CREATING THE AZURE COGNITIVE SEARCH SERVICE FOR THE FIELD KNOWLEDGEBASE

The Knowledgebase screen in the app is not currently attached to any data source. The Web API includes

operations for querying and updating the Tips, BoilerParts, and Engineers tables in the KnowledgeDB

database. However, the purpose of the Query screen in the app is to support searches through all of these

tables. The volume of data in these tables is likely to increase quickly, so Maria, Kiana, and Preeti decide to

deploy Azure Cognitive Search to support this feature. An app can submit queries and receive results from

Azure Cognitive Search through a custom connector.

Azure Cognitive Search works best if the data to be searched is contained in a single database entity. Kiana

creates a view in the KnowledgeDB database that presents a unified view of the Tips, BoilerParts, and

Engineers tables, as follows:

1. In the Azure portal, go to the KnowledgeDB SQL Database page.

2. In the left pane, select Query Editor and sign in to the database as sqladmin, using the password

Pa55w.rd.

3. In the query window, enter the following statement, and then select Run:

CREATE OR ALTER VIEW [dbo].[Knowledge] AS

SELECT T.Id, T.Subject, T.Body, B.Name, B.Overview

FROM [dbo].[Tips] T INNER JOIN [dbo].[BoilerParts] B

ON B.Id=T.KnowledgeBaseBoilerPartId

Verify that the view, Knowledge, is created successfully.

4. In the left pane, select Connection strings. Make a note of the ADO.NET connection string; you’ll need it

when you configure Azure Cognitive Search:

Working with Kiana, Preeti configures a new instance of the Azure Cognitive Search service to perform

searches on rows in the Knowledge view:

1. On the Home page, in the Azure portal, select + Create a resource, type Azure Cognitive Search, press

Enter, and then select Create:

2. On the New Search Service page, enter the following settings, and then select Review + create:

• Subscription: Select your Azure subscription

• Resource group: webapi_rg

• Service name: Enter a unique name for the service

• Location name: Select your nearest region

• Pricing tier: Free

3. On the validation page, select Create, and wait while the service is provisioned.

4. Go to the page for the new search service, select Overview, make a note of the Url (you’ll need this later

when you create the custom connector for Power Apps), and then select Import Data:

5. On the Import data page, in the Data Source drop-down list box, select Azure SQL Database:

6. On the Connect to your data page, specify the following settings:

• Data Source: Azure SQL Database

• Data source name: knowledgebase

• Connection string: Enter the Azure SQL Database connection string for the KnowledgDB database that

you recorded earlier; in this string, make sure to set the password to Pa55w.rd

• Leave the User Id and Password fields at their default values; these items are retrieved from the

connection string

7. Select Test connection. Ensure that the test is successful, select the [Knowledge] view in the Table/View

drop-down list box, and then select Next: Add cognitive skills (Optional):

8. On the Add cognitive skills (Optional) page, select Skip to: Customize target index.

9. On the Customize target index page, select Retrievable for all columns, and Searchable for Subject, Body,

Name, and Overview. Select Next: Create an indexer:

10. On the Create an indexer page, change the indexer Name to knowledgebase-indexer. For the Schedule,

select Hourly, set the High watermark column to Id, and then select Submit:

11. To test the indexer, on the Overview page for the search service, select Search Explorer:

12. In the Query string field, enter a word to search for in the knowledge base, and then select Search. The

search service should generate a list of documents with a match in the Subject, Body, Name, or Overview

fields, and display them in the Results pane. Make a note of the Request URL and the sample Results;

you’ll need these items later as an example request and response when you set up the Power Apps

custom connector:

CREATING THE CUSTOM CONNECTOR FOR THE AZURE COGNITIVE SEARCH SERVICE

Kiana can now create a custom connector that Power Apps uses to send search requests to the search service.

She does this using Power Apps Studio:

1. Sign in to Power Apps Studio at http://make.powerapps.com.

2. In the left pane, expand Data, and select Custom Connectors. In the right pane, select + New custom

connector, and then select Create from blank:

http://make.powerapps.com/

3. In the Create from blank dialog box, set the new connector name to VanArsdelKBConnector, and then

select Continue:

4. On the General information page, enter a description and set the Scheme to HTTPS. In the Hosts box,

enter the URL for your search service (you noted this URL earlier) but without the https:// prefix, and then

select Security:

5. On the Security page, in the Authentication drop-down list box, select API Key. In the Parameter label

field, enter api-key. In the Parameter name field, enter api-key. Select Definition:

6. On the Definition page, select New action. In the Summary field, enter Query. In the Description field,

enter Query the knowledgebase. In the Operation ID field, enter Query. Under Request, select + Import

from sample:

7. In the Import from sample dialog box, enter the following values, and then select Import:

• Verb: GET

• URL: Provide the example request URL that you noted when you tested the search service in Search

Explorer earlier

• Headers: Content-type

8. Back on the Definition page, scroll down to the Query section, select the ellipsis button next to search,

and then select Edit:

9. On the edit screen, in the Parameters section, in the Default value field, enter an asterisk (*). Leave the

other fields at their default values, and select Back:

10. On the Definition page, in the Query section, select the ellipsis button next to api-version, and then select

Edit:

11. On the edit screen, in the Parameters section, in the Default value field, enter 2020-06-30-Preview (this is

the version associated with the current version of Azure Cognitive Search; you can see the version in the

request URL that you noted earlier). Set Is required to Yes, and set Visibility to internal. Leave the other

fields at their default values, and then select Back:

12. On the Definition page, scroll down to the Response section, and select + Add default response:

13. In the Import from sample dialog box, in the Headers field, enter the text Content-type. In the Body field,

enter the example results that you recorded when testing the search service, and then select Import:

14. On the Definition page, select the default response:

15. In the Description field of the Content-type response, enter application/json, and then select Back:

Note: The Body section on this page should display the fields of the response, such as Body, Id, Name,

Overview, and Subject if it has been parsed successfully.

16. Select Create connector:

The connector should be created without reporting any errors or warnings.

UPDATING THE APP TO USE AZURE COGNITIVE SEARCH: FIELD KNOWLEDGEBASE

Maria can now use the custom connector in the app. But first, she requires a key that grants her the privileges

required to connect to the Azure Cognitive Search service. Preeti obtains the key from the Keys page for the

service in the Azure portal, and gives it to Maria:

Maria edits the app in Power Apps Studio and performs the following tasks:

1. Open the VanArsdelApp app for editing.

2. On the View menu, select Data sources, and then select Add data:

3. In the Search box, under Select a data source, enter Van. The VanArdelKBConnector connector should be

listed:

4. Select the VanArdelKBConnector connector. In the VanArdelKBConnector pane, enter the key that Preeti

provided for the search service, and then select Connect:

5. On the File menu, save and close the app, and then open it again. You may be prompted to authorize use

of the custom connector when the app reopens.

Note: This step is necessary to enable the custom connector.

6. In the Tree view pane, expand the Knowledgebase screen, and select the TextSearchBox2 control. Enter

the following formula for the OnChange action:

If(!IsBlank(TextSearchBox2.Text), ClearCollect(azResult, VanArsdelKBConnector.Query({search:
TextSearchBox2.Text}).value))

This formula calls the Query operation of the custom connector searching for items that match the term

the user types into the search box. The results are stored in a collection named azResult.

7. In the Tree view pane, under the Knowledgebase screen, select the BrowseGallery2 control. Set the Items

property to azResult.

8. Expand the BrowseGallery2 control and remove the Image4 control.

9. Select the Title2 control. Set the following properties to the values specified:

• Text: ThisItem.Subject

• X: 24

• Width: Parent.TemplateWidth – 104

10. Select the Subtitle2 control. Set the Text property to ThisItem.Body.

11. Press F5 to preview the app. On the Knowledgebase screen, enter a search term, and press Enter.

Matching articles from the knowledge base should be displayed:

Note: The details screen hasn’t been created yet, so clicking the > icon next to an article doesn’t work.

12. Close the preview window and return to Power Apps Studio.

13. In the Tree view pane, right-click the PartDetails screen, and select Duplicate screen. This action will add

another screen to the app, named PartDetails_1:

14. In the Tree view pane, rename the PartDetails_1 screen as KnowledgebaseDetails.

• Select the LblAppNameX control on the screen; set the Text property to "Article Details" (including

the quotes)

15. In the Tree view pane, select the DetailFormX control on the screen. Set the following properties:

• DataSource: azResult

• Item: BrowseGallery2.Selected

Note: BrowseGallery2 is the browse gallery on the Knowledgebase screen. In your application, this

gallery may have a different name.

16. In the Tree view pane, expand the DetailFormX form, then change the names of the following data card

controls:

• Name_DataCard1_1: Name_DataCard

• CategoryID_DataCard1_1: Subject_DataCard

• Overview_DataCard1_1: Overview_DataCard

• Price_DataCard1_1: Body_DataCard

17. Delete the NumberInStock_DataCard1_1, and Image_DataCard1_1 controls.

18. Select the Name_DataCard control. Set the Default property to ThisItem.Name.

19. Select the Subject_DataCard control. Set the following properties:

• DataField: "Subject"

• DisplayName: "Subject"

• Default: ThisItem.Subject

20. Select the Overview_DataCard control. Set the Default property to ThisItem.Overview.

21. Select the Body_DataCard control. Set the following properties:

• DataField: "Body"

• DisplayName: "Body"

• Default: ThisItem.Body

22. Select the DataCardValueX control in the Body_DataCard control. Set the Text property to

Parent.Default.

23. Resize each of the data card controls to spread them out down the screen:

24. Select the back arrow icon in the screen header. Change the OnSelect action property to

Navigate(Knowledgebase, ScreenTransition.None).

25. In the Tree view pane, select the Knowledgebase screen, and then select the BrowseGalleryX control.

Change the OnSelect action property to Navigate(KnowledgebaseDetails, ScreenTransition.None). This

action displays the details screen for the knowledge base article when the user selects the > icon for an

entry in the browse screen.

26. Save the app.

27. Press F5 to preview the app. On the Knowledgebase screen, enter a search term and press Enter. Select

an article and verify that its details are displayed. Verify that the Back icon returns the user to the browse

screen.

28. Close the preview window and return to Power Apps Studio.

Maria, Kiana, and Preeti have successfully incorporated the Web API and Azure Cognitive Search into the app.

CHAPTER 7: ADDING FUNCTIONALITY TO THE APP

Kiana and Maria are excited to show the inventory management app to Caleb, the field technician. He likes it,

but suggests adding some extra user interface functionality to make it easier to use. Specifically, Caleb would

like to be able to:

• Add a photograph of the work done on a boiler or air conditioning unit, and add it to the appointment

details on the Edit Appointment screen. This image could prove useful as documentary evidence of

repairs performed. The Edit Appointment screen currently enables the user to add an image to the

appointment, but the image isn’t saved as this feature hasn’t been fully implemented yet. The reason for

this omission is that Kiana and Preeti need to determine the best place to store image data. Caleb would

like this functionality added as soon as possible.

• View a complete appointment history for a customer, to track repairs requested for that customer and

monitor any ongoing issues that may require repeated callouts.

• Order parts from the Part Details screen.

Additionally, the image control on the Part Details screen displays the images stored at a specified URL.

Currently the URLs in the data are simply placeholders. Like the photographs for the appointment screen,

Kiana and Preeti need to determine the best place to store images so they’re available to the app.

ADDING A PHOTOGRAPH TO AN APPOINTMENT

Photographs need to be stored somewhere accessible by the app. For performance and security reasons,

Preeti doesn’t want photographs to be saved in OneDrive or in Azure SQL Database. Instead, she and Kiana

decide to use Azure Blob Storage. Blob Storage is optimized for holding large binary objects, and is robust, with

built-in security. Power Apps has a connector that allows access to Blob Storage. Maria suggests adding a new

picture-taking screen, improving the user experience for Caleb.

Note: For detailed information, visit the Azure Blob Storage page at

https://azure.microsoft.com/services/storage/blobs/.

Preeti creates the Blob Storage account from the Azure portal:

1. In the Azure portal, on the Home page, select + Create a resource. In the Search the Marketplace box,

enter Storage account and press Enter.

2. On the Storage account page, select Create.

3. On the Create storage account page, enter the following details, and then select Review + create:

• Subscription: Select your subscription

• Resource group: webapi_rg

https://azure.microsoft.com/services/storage/blobs/

• Storage account name: Provide a globally unique name and make a note of it for later

• Location: Select your nearest location

• Performance: Standard

• Account kind: BlobStorage

• Replication: RA-GRS

4. On the validation page, select Create and wait for the storage account to be provisioned.

5. Go to the page for the new storage account.

6. On the Overview page, select Containers:

7. On the Containers page, select + Container. Create a new container named photos, and then select

Create. Change the Public access level to Blob:

8. Back on the Overview page for the storage account, under settings, select Access keys. On the Access

keys page, select Show keys. Make a note of the value of the key for key1:

Preeti gives the storage account name and key to Kiana, who uses this information to create a custom

connector for the app:

1. Sign in to Power Apps Studio at http://make.powerapps.com.

2. In the left pane, expand Data, and select Connections. The existing connections used by the app should be

listed. Select + New connection:

http://make.powerapps.com/

3. On the New connection page, scroll down, select Connections, select Azure Blob Storage, and then select

Create:

4. In the Azure Blob Storage dialog box, enter the storage account name and access key that Preeti

provided, and then select Create:

5. Wait while the new connection is created. It should appear on the list of connections.

Maria can use this connection to Azure Blob Storage in the app to save and retrieve photographic images. Her

first task is to add the connection to the app:

1. Open the VanArsdelApp app for editing in Power Apps Studio.

2. In the Data pane, select Add data, search for the Azure Blob Storage connector, and then select this

connector:

3. In the Azure Blob Storage dialog box, select the Azure Blob Storage connector to add it to your app:

Maria’s next task is to add a screen that enables a technician or engineer to save a photograph. Maria decides

to add a new screen with a Picture control. When the app is run on a mobile device, this control can integrate

with the camera to enable the technician to take a photograph. On other devices, this control prompts the

user to upload an image file instead. She adds a link to this new screen from the EditAppointment screen:

1. On the Insert menu, select New screen, and then select the Scrollable template:

2. In the Tree view pane, select the new screen and rename it as TakePhoto.

3. Change the Text property of the LblAppNameX control on this screen to Take a photograph.

4. Delete the CanvasX control from the screen.

5. In the Insert menu, from the Media drop-down list, select Add picture to create a new picture control:

Note: The picture control is actually a composite custom component that enables the user to add a

picture to the screen and display the results.

6. Resize and reposition the picture control to occupy the body of the screen.

7. In the Tree view pane, select the IconBackarrowX control on the AppointmentDetails screen, and select

Copy:

8. In the Tree view menu, right-click the TakePhoto screen, and then select Paste. The IconBackArrowX

control will be added to the screen:

9. Move the IconBackArrowX control to the top left of the header bar.

10. In the Tree view pane, select the IconBackArrowX control on the TakePhoto screen. In the right pane, on

the Advanced tab, modify the OnSelect action property to Navigate(EditAppointment,

ScreenTransition.None).

11. Add a new Save icon control to the top right of the header bar. Set the Visible property of this control to

If(IsBlank(AddMediaButton1.Media), false, true).

This setting makes the Save icon invisible if the user hasn’t selected an image.

12. Change the formula in the OnSelect action property of the Save icon control to:

Set(ImageID, GUID() & ".jpg");

AzureBlobStorage.CreateFile("photos", ImageID, AddMediaButton1.Media);

Patch(appointmentsCollection,

LookUp(appointmentsCollection,id=BrowseAppointmentsGallery.Selected.id),

{imageUrl:"https://myappphotos.blob.core.windows.net/photos/" &

ImageID});

Navigate(EditAppointment,ScreenTransition.Cover);

Replace <storage account name> with the name of the Azure storage account that Preeti created.

This code uploads the image to the photos container in Azure Blob Storage. Each image is given a unique

filename. The Patch function updates the imageUrl property in the appointments record with the URL of

the image in Blob Storage.

13. In the Tree view pane, expand the AddMediaWithImageX control. Modify the Image property of the

UploadedImageX control, and set it to AppointmentImage.

AppointmentImage is a variable that will be populated with an image either uploaded by the user, or as

the result of taking a photograph. You’ll initialize this variable in the EditAppointment screen later.

14. In the Tree view pane, select the AddMediaButtonX control. Set the UseMobileCamera property of this

control to true. Set the OnChange action property of the control to:

Set(AppointmentImage, AddMediaButton1.Media)

This formula changes the AppointmentImage variable to reference the new image. The UploadedImageX

control will display this image.

15. In the Tree view pane, select the EditAppointment screen.

16. Expand the EditFormX control. Under the Image_DataCardX control, remove the AddPictureX control:

17. Select the ImageX control. Change the following properties:

• Image: Parent.Default

• X: 30

• Y: DataCardKeyX.Y + DataCardKeyX.Height + 150 (where DataCardKeyX is the data card containing

the ImageX control)

• Width: Parent.Width – 60

• Height: 400

Note: The image control will drop down below the bottom of the screen, but a scroll bar will be added

automatically to enable the image to be viewed.

18. Add a Camera icon to the data card then position it between the Image label and the ImageX control.

Change the name of the control to CameraIcon:

Note: Make sure you select the Camera Icon control, and not the Camera Media control.

19. Set the OnSelect action property of the CameraIcon control to:

Set(AppointmentImage, SampleImage);

Navigate(TakePhoto, ScreenTransition.None);

When the user clicks this icon, they will go to the TakePhoto screen, to enable them to take a photo or

upload an image. The initial image displayed will be the default sample image.

To test the app:

1. In the Tree view pane, select the Home screen.

2. Press F5 to preview the app.

3. On the Home screen, select Appointments.

4. In the browse screen, select any appointment.

5. On the details screen for the appointment, select the edit icon in the screen header.

6. On the edit screen, select the Camera icon for the image.

7. Verify that the Take a photograph screen appears.

8. Select Change Picture and upload a picture of your choice (or take a photograph if you’re running on a

mobile device).

9. Select Save. Verify that the image appears on the details page, and then select the tick icon to save the

changes back to the database.

10. Close the preview window and return to Power Apps Studio.

DISPLAYING IMAGES OF PARTS

Having determined that Azure Blob Storage is an ideal location for saving pictures associated with

appointments, Preeti and Kiana decide that they should use the same approach for storing the images of parts.

A key advantage of this approach is that it doesn’t require any modifications to the app. The app reuses the

same storage account and the same connection. As a separate migration exercise, they can:

1. Create a new Blob container.

2. Upload the part images to this container.

3. Change the ImageUrl references in the Parts table in the InventoryDB database to the URL of each image.

The app will pick up the new URL for each part image automatically, and the Image control on the PartDetails

screen will display the image.

TRACKING APPOINTMENT HISTORY FOR A CUSTOMER

Maria thinks that being able to quickly view all the history from a

customer’s previous technician’s visits could be added to the app

by creating a custom component. Working with Caleb on what

information they want to see, Maria sketches out a simple design

comprising the notes and the date of each visit.

Looking at the data, Maria believes that a gallery control is the

best way to display the table data on a screen.

Maria creates the custom component as follows:

1. Using Power Apps Studio, in the Tree view pane, select

Components, and then select + New component:

A new blank component named Component1 is created. Rename the component as

DateHistoryComponent:

2. On the Insert menu, select Gallery, and then choose the Blank flexible height gallery template:

3. Move the gallery control and resize it to fill the custom component.

4. Select the Add an item from the insert pane, then select Text label.

5. In the Tree view pane, rename the label control as NotesLabel. Set the Overflow property to

Overflow.Scroll. This setting enables the control to display several lines of text and allow the user to scroll

through it. Set the following properties so you can position and size the control:

• LineHeight: 2

• X: 28

• Y: 18

• Width: 574

• Height: 140

6. Add a second text label to the control. Rename this control as DateLabel and set the following properties:

• LineHeight: 2

• X: 28

• Y: 174

• Width: 574

• Height: 70

7. To see how the control will look when inserted into the app and using its theme, in the Tree view pane,

select DateHistoryComponent. In the right pane, on the Advanced tab, select the Fill field and change the

color to RGBA(0, 0, 0, 1).

8. From the Insert pane, expand Shapes, and add a Rectangle control to the custom component. Set the

following properties for this control:

• X: 0

• Y: 273

• Width: Parent.Width

• Height: 2

This control acts as a separator between the records displayed in the gallery:

Maria is familiar with adding controls to screens and building Power Apps. However, reusable components

don’t work in quite the same way. Kiana described to Maria that to be able to use data in a custom

component, she must add some additional custom input properties. Kiana also explained that Maria needs to

provide example data for these properties, to allow her to reference the data fields in the controls in her

component, as follows:

1. In the Tree view pane, select DateHistoryComponent. In the right pane, on the Properties tab, select New

custom property:

2. In the New custom property dialog box, specify the following values, and then select Create:

• Display name: Data

• Name: Data

• Description: The table of appointments for a customer, showing the notes and dates

• Property type: Input

• Data type: Table

• Raise OnReset when value changes: Leave blank

3. To change the sample data displayed by the control, select the new Data custom property. In the formula

field, type Table({Notes: "Example notes field text.", 'Appointment Date': Text(Today())}).

4. In the Tree view pane, select the GalleryX control in DateHistoryComponent, and rename it as

AppointmentHistory.

5. In the right pane, on the Advanced tab, set the Items property of the AppointmentHistory gallery control

to Parents.Data.

6. Select the NotesLabel control. In the right pane on the Advanced tab, change the Text property to

ThisItem.Notes, and change the Size property to 20.

Note: The Size property specifies the font size for the text displayed by the control.

7. Select the DateLabel control to change the Text property to ThisItem.'Appointment Date' and change the

Size property to 20. The fields in the custom component should display the sample data:

The custom component is complete. Maria creates a new screen to display the appointment history for a

customer using this component:

1. In the Tree view pane, select the Screens tab.

2. Expand the BrowseAppointments screen, expand the BrowseAppointmentsGallery control, and select

the Body1_1 control. On the Insert menu, select Icons, and then select the Detail list icon:

3. Change the name of the icon control to ViewAppointments.

4. In the Tree view menu, select the BrowseAppointmentsGallery control. In the right pane, on the

Advanced tab, change the TemplateSize property to 220. Increasing this property expands the space

available in the gallery.

5. Move the ViewAppointments icon into the empty space below the customer name:

6. Select the ViewAppointments icon control. Set the OnSelect action property to the following formula:

ClearCollect(customerAppointmentsCollection,

FieldEngineerAPI.getapicustomeridappointments(ThisItem.customerId));

Navigate(AppointmentsHistoryScreen, ScreenTransition.Fade)

This formula populates a collection named customerAppointmentsCollection with the appointments for

the selected customer, and then moves to the AppointmentHistoryScreen to display them. You’ll create

this screen in the following steps.

7. On the Insert menu, select New screen, and then select the Scrollable template:

8. Change the name of the new screen to AppointmentHistoryScreen.

9. Delete the CanvasX control that was added to this screen:

10. Select the LblAppNameX control on this screen. In the right pane, on the Advanced tab, change the Text

property to:

"Appointments History for " &

BrowseAppointmentsGallery.Selected.customer.name

11. Set the following properties for the LblAppNameX control to adjust the position and size:

• X: 90

• Y: 0

• Width: 550

• Height: 140

12. Select the RectQuickActionBarX control, and set the Height property to 140.

13. Add a Left icon control to the screen header, to the left of the title. Set the OnSelect action property for

this control to Navigate(BrowseAppointments, Transition.None).

14. On the Insert menu, select Custom, and then select the DateHistoryComponent:

15. Move and resize the component so that it occupies the body of the screen, below the heading:

16. Set the following properties for this component:

• Data: customerAppointmentsCollection

• Appointment Date: startDateTime

• Notes: notes

17. Save the app.

To test the Power Apps:

1. In the Tree view pane, select the Home screen.

2. Press F5 to preview the app.

3. On the Home screen, select Appointments.

4. In the browse screen, select the Detail list icon for any appointment.

5. Verify that the Appointments History screen for the selected customer appears.

6. Close the preview window and return to Power Apps Studio.

ORDERING PARTS

A key requirement of the system is to enable a technician to order any parts required while visiting a

customer. If the parts are in stock, it should be possible to schedule another visit to complete the repair at the

next convenient date for the customer. If the parts are currently out of stock and have to be ordered, the

technician can tell the customer. Malik can then arrange an appointment with the customer when Maria

receives notice that the parts have arrived in the warehouse.

The reservations part of the app uses the tables in the InventoryDB database shown in the diagram below. The

Orders table holds information about orders placed for parts. The Reservations table lists the reservation

requests that technicians and engineers have made for parts. The Engineers table provides the name and

contact number for the engineer who made the reservation, in case of any queries by Maria, the inventory

manager.

To support this feature, Kiana has to update the Web API with a method that fetches the number of reserved

items for a specified part:

1. Open the FieldEngineerApi Web API project in Visual Studio Code.

2. Add a file named Order.cs to the Models folder. Add the following code to this file. The Orders class tracks

the details of orders placed for parts.

using System;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace FieldEngineerApi.Models

{

 public class Order

 {

 [Key]

 public long Id { get; set; }

 public long BoilerPartId { get; set; }

 public BoilerPart BoilerPart { get; set; }

 public long Quantity { get; set; }

 [Column(TypeName = "money")]

 public decimal TotalPrice { get; set; }

 [Display(Name = "OrderedDate")]

 [DataType(DataType.DateTime)]

 [DisplayFormat(DataFormatString = "{0:MM/dd/yyyy}")]

 public DateTime OrderedDateTime { get; set; }

 public bool Delivered { get; set; }

 [Display(Name = "DeliveredDate")]

 [DataType(DataType.DateTime)]

 [DisplayFormat(DataFormatString = "{0:MM/dd/yyyy}")]

 public DateTime? DeliveredDateTime { get; set; }

 }

}

3. Add another new file named Reservation.cs to the Models folder and add the code shown below to this

file. The Reservation class contains information about the number of items for a given part that are

currently reserved for other customers.

using System;

using System.ComponentModel.DataAnnotations;

namespace FieldEngineerApi.Models

{

 public class Reservation

 {

 [Key]

 public long Id { get; set; }

 public long BoilerPartId { get; set; }

 public BoilerPart BoilerPart { get; set; }

 public int NumberToReserve { get; set; }

 public string EngineerId { get; set; }

 public InventoryEngineer Engineer { get; set; }

 }

}

4. Add one more file, named InventoryEngineer.cs, to the Models folder, with the following code. The

InventoryEngineer class records which engineers have made which reservations:

using System.ComponentModel.DataAnnotations;

using System.Collections.Generic;

namespace FieldEngineerApi.Models

{

 public class InventoryEngineer

 {

 [Key]

 public string Id { get; set; }

 [Required]

 public string Name { get; set; }

 public string ContactNumber { get; set; }

 public List<Reservation> Reservations { get; set; }

 }

}

5. Open the InventoryContext.cs file in the Models folder, and add the statements shown below in bold to

the InventoryContext class:

public class InventoryContext : DbContext

{

 public InventoryContext(DbContextOptions<InventoryContext> options)

 : base(options)

 {

 }

 public DbSet<BoilerPart> BoilerParts { get; set; }

 public DbSet<InventoryEngineer> Engineers { get; set; }

 public DbSet<Order> Orders { get; set; }

 public DbSet<Reservation> Reservations { get; set; }

}

6. In the Terminal window in Visual Studio Code, run the following commands to build controllers for

handling orders and reservations:

dotnet aspnet-codegenerator controller ^

 -name OrdersController -async -api ^

 -m Order ^

 -dc InventoryContext -outDir Controllers

dotnet aspnet-codegenerator controller ^

 -name ReservationsController -async -api ^

 -m Reservation ^

 -dc InventoryContext -outDir Controllers

7. Open the BoilerPartController.cs file in the Controllers folder, and add the GetTotalReservations method,

highlighted below in bold, to the BoilerPartsController class:

public class BoilerPartsController : ControllerBase

{

 private readonly InventoryContext _context;

 public BoilerPartsController(InventoryContext context)

 {

 _context = context;

 }

 ...

 // GET: api/BoilerParts/5/Reserved

        [HttpGet("{id}/Reserved")]

        public async Task<ActionResult<object>> GetTotalReservations(long id)

        {

             var reservations = await _context

                 .Reservations

                 .Where(r => r.BoilerPartId == id)

                 .ToListAsync();

             int totalReservations = 0;

             foreach(Reservation reservation in reservations)

             {

                 totalReservations += reservation.NumberToReserve;

             }

             return new {id, totalReservations};

        }

 ...

}

8. Edit the OrdersController.cs file, and modify the PostOrder method in the OrdersController class as

highlighted below in bold:

[HttpPost]

public async Task<ActionResult<Order>> PostOrder(long boilerPartId, int

quantity)

{

 var part = await _context.BoilerParts.FindAsync(boilerPartId);

 Order order = new Order

 {

 BoilerPartId = boilerPartId,

 Quantity = quantity,

 OrderedDateTime = DateTime.Now,

 TotalPrice = quantity * part.Price

 };

 _context.Orders.Add(order);

 await _context.SaveChangesAsync();

 return CreatedAtAction("GetOrder", new { id = order.Id }, order);

}

9. Edit the ReservationsController.cs file. Modify the PostReservation method in the ReservationsController

class as follows:

[HttpPost]

public async Task<ActionResult<Reservation>> PostReservation(long

boilerPartId, string engineerId, int quantityToReserve)

{

 Reservation reservation = new Reservation

 {

 BoilerPartId = boilerPartId,

 EngineerId = engineerId,

 NumberToReserve = quantityToReserve

 };

 _context.Reservations.Add(reservation);

 await _context.SaveChangesAsync();

 return CreatedAtAction("GetReservation", new { id =

reservation.Id }, reservation);

}

10. In the Terminal window, run the following commands to build and publish the Web API ready for

deployment:

dotnet build

dotnet publish -c Release -o ./publish

11. In Visual Studio Code, right-click the publish folder, and then select Deploy to Web App:

Preeti can now update the Azure API Management service used by the VanArsdel app to reflect the updated

Web API. This is a non-breaking change; existing operations will continue to work, the differences being the

new controllers and operations to make reservations and place orders. Preeti performs the following tasks:

Note: Preeti could have chosen to delete the existing Field Engineer API and replace it with a new version, but

this approach risks breaking any existing applications that may be currently using the API. It’s better practice to

leave the existing API in place and add the modifications as a revision.

1. In the Azure portal, go to the APIM service.

2. On the API Management service page, in the left pane, under APIs, select APIs:

3. Select the Field Engineer API, select the ellipsis menu, and then select Add revision:

4. In the Create a new revision of the Field Engineer API dialog box, enter the description Added GET

operation and POST operations for part reservations and orders, and then select Create:

5. On the REVISION 2 page, select Design:

6. On the Design page, select Add operation. In the FrontEnd pane, set the following properties, and then

select Save. This operation is used for retrieving the number of items reserved for a given boiler part:

• Display name: api/BoilerParts/{id}/Reserved

• Name: api-boilerparts-id-reserved

• URL: GET api/BoilerParts/{id}/Reserved

7. On the Test tab for the new operation, set the id parameter to a valid part number (the example in the

image uses part 1), and then select Send:

8. Verify that the test is successful. The operation should complete with an HTTP 200 response, and a body

that shows the number of reservations for the product:

9. On the Design page, select Add operation. In the FrontEnd pane, set the following properties. This

operation defines POST requests for creating new orders:

• Display name: api/Orders - POST

• Name: api-orders-post

• URL: POST api/Orders

10. On the Query tab, select + Add parameter, add the following parameters, and then select Save:

• Name: boilerPartId, Descripion: Boiler Part ID, Type: long

• Name: quantity, Descripion: Quantity, Type : integer

11. Select Add operation again In the FrontEnd pane, and set the following properties. This operation defines

POST requests for creating new reservations:

• Display name: api/Reservations - POST

• Name: api-reservations-post

• URL: POST api/Reservations

12. On the Query tab, add the following parameters, and then select Save:

• Name: boilerPartId, Descripion: Boiler Part ID, Type: long

• Name: engineerId, Description: Engineer ID, Type: string

• Name: quantityToReserve, Descripion: Quantity to reserve, Type: integer

13. On the Revisions tab, select the new version. On the ellipsis menu for this version, select Make current:

14. In the Make revision current dialog box, select Save.

15. Open another page in your web browser and go to the URL https://<APIM name>.azure-

api.net/api/boilerparts/1/reserved where <APIM name> is the name of your API service. Verify that you

get a response similar to the following:

{"id":1,"totalReservations":5}

The updated Web API is now available. In theory, Kiana could create a new custom connector for the updated

Web API and add it to the app. The app could then implement its own logic to determine how many items of

the specified product are currently in stock, how many are reserved, compare the results to the number of

items required, place an order for more stock if necessary, or reserve items from the existing stock. However,

this kind of logic is better implemented in an Azure Logic App. The app can call the Logic App through a custom

connector when a technician wishes to reserve or order a part.

To create the Logic App, Kiana uses the following steps:

Note: To keep things simple, the Logic App created in this example is non-transactional. It’s possible that

between checking the availability of a part and making a reservation, a concurrent user might make a

conflicting reservation. You could implement transactional semantics by replacing some of the logic in this

Logic App with a stored procedure in the InventoryDB database.

1. In the Azure portal, on the Home page, select + Create a resource.

2. In the Search the marketplace box, type Logic App, and then press Enter.

3. On the Logic App page, select Create.

4. On the Create a logic app page, enter the following values, and then select Review + create.

• Subscription: Select your Azure subscription

• Resource group: webapi_rg

• Logic App name: FieldEngineerPartsOrdering

• Region: Select the same location you used for the Web API

• Associate with integration service environment: Leave blank

• Enable log analytics: Leave blank

5. On the verification page, select Create, and wait while the Logic App is deployed.

6. When the deployment is complete, select Go to resource.

7. On the Logic Apps Designer page, scroll down to the Templates section, and then select Blank Logic App:

8. On the All tab, in the Search connectors and triggers text box, select Request:

9. On the Triggers tab, select When a HTTP request is received:

10. In the Request Body JSON Schema box, enter the following schema, and then select + New step:

{

 "type": "object",

 "properties": {

 "boilerPartId": {

 "type": "integer"

 },

 "numberToReserve": {

 "type": "integer"

 },

 "engineerId": {

 "type": "string"

 }

 }

}

This schema defines the content of the HTTP request that the Logic App is expecting. The request body

comprises the ID of a boiler part, the number of items to reserve, and the ID of the engineer making the

request. The app will send this request when an engineer wants to reserve a part.

11. In the Choose an operation box, select All, and then select HTTP:

The Logic App will call the BoilerParts{id} operation of the Web API to retrieve information about the

boiler part provided by the request from the app.

12. In the Actions pane, select the HTTP action:

13. In the HTTP action box, on the ellipsis menu, select Rename, and change the name of the action to

CheckBoilerPart:

14. Set the properties of the HTTP action as follows, and then select + New Step:

• Method: GET

• URI: https://<APIM name>.azure-api.net/api/boilerparts/, where <APIM name> is the name of your

APIM service. In the Dynamic content box for this URI, on the Dynamic content tab, select

boilerPartId

15. In the Choose an operation box, in the Search connectors and actions box, enter Parse JSON, and then

select the Parse JSON action:

16. Using the ellipsis menu for the Parse JSON action, rename the action as ParseBoilerPart.

17. In the Content box for the ParseBoilerPart action, in the Dynamic Content box, select Body. In the

Schema box, enter the following JSON schema, and then select + New step:

{

 "type": "object",

 "properties": {

 "id": {

 "type": "integer"
 },

 "name": {

  "type": "string"
 },

 "categoryId": {

 "type": "string"

 },

  "price": {

  "type": "number"
 },

 "overview": {

  "type": "string"
 },

 "numberInStock": {

 "type": "integer"
 },

 "imageUrl": {

 "type": "string"
 },

 }

}

This action parses the response message returned by the getBoilerParts/{id} request. The response

contains the details of the boiler part, including the number currently in stock.

18. In the Choose an operation box for the new step, select the HTTP connector.

19. On the Actions tab, select the HTTP action.

20. Using the ellipsis menu for the operation, rename the operation as CheckReservations.

21. Set the following properties for this operation, and then select + New step:

• Method: GET

• URI: https://<APIM name>.azure-api.net/api/boilerparts/. As before, in the Dynamic content box

for this URI, on the Dynamic content tab, select boilerPartId. In the URI field, append the text

/reserved after the boilerPartId placeholder

22. In the Choose an operation box for the new action, in the Search connectors and actions box, enter Parse

JSON, and then select the Parse JSON action.

23. Rename the operation as ParseReservations.

24. Set the Content property to Body.

25. Enter the following schema, and then select + New step:

{

 "type": "object",

 "properties": {

 "id": {

 "type": "integer"
 },

 "totalReservations": {

 "type": "integer"
 }

 }

}

26. In the Choose an operation box for the new action, in the Search connectors and actions box, enter

Condition, and then select the Condition Control action:

27. Rename the operation as CompareStock.

28. Select the Choose a value box. In the Add dynamic content box, on the Expression tab, enter the

following expression, and then select OK:

add(body('ParseReservations')?['totalReservations'], triggerBody()?['num
berToReserve'])

This expression calculates the sum of the number of items of the specified boiler part that are currently

reserved, and the number requested by the engineer.

29. In the condition drop-down list box, select is greater than.

30. In the remaining Choose a value box, in the Dynamic content box, on the Dynamic content tab, under

ParseBoilerPart, select numberInStock:

31. If the number of items required plus the number reserved is greater than the number in stock, then the

app needs to place an order to replenish the inventory. In the True branch of the CompareStock action,

select Add an action.

32. On the All tab for the new operation, select HTTP, and then select the HTTP action.

33. Rename the operation as PostOrder.

34. Set the following properties for the PostOrder operation:

• Method: POST

• URI: https://<APIM name>.azure-api.net/api/orders

• In the Queries table, in the first row, enter the key boilerPartId. For the value in the Add dynamic

content box, on the Dynamic content tab, select boilerPartId

• In the second row of the Queries table, enter the key quantity. In the value field, enter 50:

The Logic App will automatically order 50 items of the specified part when stock is running low.

Note: The Logic App assumes that the engineer will nor actually attempt to reserve more than 50 items of

a specified part in a single request!

35. Leave the False branch of the CompareStock action empty.

36. Below the CompareStock action, select + New step.

37. On the All tab for the new operation, select HTTP, and then select the HTTP action.

38. Rename the operation as PostReservation.

39. Set the following properties for the PostReservation operation:

• Method: POST

• URI: https://<APIM name>.azure-api.net/api/reservations

• In the Queries table, in the first row, enter the key boilerPartId. For the value in the Add dynamic

content box, on the Dynamic content tab, select boilerPartId.

• In the second row, enter the key engineerId. For the value in the Add dynamic content box, on the

Dynamic content tab, select engineerId

• In the third row, enter the key quantityToReserve. For the value in the Add dynamic content box, on

the Dynamic content tab, select numberToReserve

40. Select + New Step. In the Choose an operation box, search for and select the Response action.

41. Set the following properties for the Response action:

• Status Code: 200

• Headers: Key – content-type, Value – application/json

• Body: In the Dynamic content box, select the Body element from the PostReservation request. This is

the body returned when the reservation is made:

42. In the top left of the Logic Apps Designer page, select Save. Verify that the Logic App saves without any

errors.

To create the custom connector that the app can use to trigger the Logic App, Kiana performs the following

steps while still in the Azure portal:

1. On the Overview page for the Logic App, select Export.

2. In the Export to Power Apps pane, name the connector PartsOrderingConnector, select your Power Apps

environment, and then select OK.

3. Sign in to Power Apps Studio at http://make.powerapps.com.

4. In your environment, under Data, select Custom Connectors and verify that the PartsOrderingConnector

is listed:

http://make.powerapps.com/

Maria can now modify the VanArsdel app to enable a technician to order parts while attending a customer

site. She adds an Order button to the PartDetails screen.

1. Sign in to Power Apps Studio at http://make.powerapps.com (if not already signed in).

2. Under Apps, select the VanArsdelApp app. On the ellipsis menu for the app, select Edit.

3. In the Data pane, select Add data, search for the PartsOrderingConnector connector, and add a new

connection using this connector:

http://make.powerapps.com/

4. In the Tree view pane, expand the PartDetails screen, and then expand the DetailForm1 form.

5. In the Properties pane on the right, select Edit fields. In the Fields pane, on the ellipsis menu, select Add a

custom card:

6. In the Tree view pane, rename the new card from DataCard1 to ReserveCard. In the Design view window,

resize the card so that it occupies the lower part of the screen, below the Image_DataCard1 control:

7. On the Insert menu, from the Input sub menu, add a Text Input control, a Button control, and a Label

control to the ReserveCard control.

8. Resize and position the controls so that they’re adjacent, with the Button control to the right of the Text

Input control, and the Label underneath the Button control.

9. In the Properties pane for the Text Input control, clear the Default property.

10. In the Properties pane for the Button control, set the Text property to Reserve.

11. Rename the Text Input control as NumberToReserve, rename the Button control as Reserve, and rename

the Label control as Message.

12. In the Properties pane for the Message control, set the Text property to Parts Reserved, and set the

Visible property to MessageIsVisible.

Note: MessageIsVisible is a variable that you will initialize to false when the screen is displayed, but is

changed to true if the user hits the Reserve button.

13. Set the OnSelect property for the Reserve button control to the following formula:

FieldEngineerPartsOrdering.manualinvoke({boilerPartId:ThisItem.id,

engineerId:"ab9f4790-05f2-4cc3-9f01-8dfa7d848179",

numberToReserve:NumberToReserve.Text});

Set(MessageIsVisible, true);

Note: This formula uses a hard-coded engineer ID to represent the technician currently running the app.

Chapter 8 describes how to retrieve the ID for the logged-on user.

Additionally, the app performs no error checking; it assumes that the request to reserve parts always

succeeds. For more information on error handling, read Errors function in Power Apps at

https://docs.microsoft.com/powerapps/maker/canvas-apps/functions/function-errors.

https://docs.microsoft.com/powerapps/maker/canvas-apps/functions/function-errors

14. Set the OnVisible property for the PartDetails screen to Set(MessageIsVisible, false).

To test the app:

1. In the Tree view pane, select the Home screen.

2. Press F5 to preview the app.

3. On the Home screen, select Parts.

4. In the browse screen, select any part.

5. On the Part Details screen, scroll down to the reservations section, enter a positive integer value, and

then select Reserve. Verify that the Parts reserved message appears:

6. Close the preview window and return to Power Apps Studio.

7. In the Azure portal, go to the page for the InventoryDB Azure SQL Database.

8. Select the Query editor, and sign in as sqladmin with your password.

9. In the Query 1 pane, enter the following query, and then select Run. Verify that the reservation you made

in the VanArsdel app appears:

SELECT * FROM [dbo].[Reservations]

CHAPTER 8: PROTECTING AND DEPLOYING THE APP

The app is now functionally complete, but Preeti and Kiana want to ensure that the solution is safe to deploy,

and that they have a mechanism for maintaining it as requirements change in the future.

PROTECTING THE APP AND RESOURCES

When you first sign in to Power Apps, you’re required to authenticate yourself, typically by providing your

email address and password. Office 365 utilizes its own Azure AD domain; each organization has its own

domain. Your credentials are checked against your organization’s domain for Office 365. Power Apps can only

access the Office 365 resources to which you’ve been granted the appropriate authority. Authorization is

managed by your Office 365 Administrator (Preeti in the VanArsdel scenario). For more information, read

Securing the app and data at https://aka.ms/AAbvtkm.

The Azure resources that an app accesses are also subject to authorization. Services such as Azure Storage

require an application to provide an access key. Additionally, many services can be protected through role-

based access control (RBAC), which describes the operations that individual users and groups can perform. The

IT Operations Manager (Preeti, again) can set the authorization policy that defines which accounts and

machines can connect to services such as Azure SQL Database, Azure Blob Storage, Azure API Management,

and Azure App Services. Some services also enable you to restrict the endpoints from which authenticated

users can request access. For example, you can configure a firewall for Azure SQL Database to deny access to

requests emanating from unexpected IP addresses.

Azure helps to protect data in-flight by using transport layer security to encrypt it. This feature is vital for

ensuring the integrity and privacy for any distributed system that transmits data over a network such as the

public internet. In the case of VanArsdel, technicians will be running the app on mobile devices, utilizing

roaming network connections that are outside the organization’s control. Preeti is keen to ensure that

unauthorized users cannot view or compromise sensitive data.

Data at rest, in storage accounts, databases, and other services in Azure, can also be encrypted. This provides

an additional layer of privacy should the datacenter housing this information be breached. For a full list of the

security features provided by Azure, read Introduction to Azure security at https://aka.ms/AAbvtkn.

https://aka.ms/AAbvtkm
https://aka.ms/AAbvtkn

PERSONALIZING THE APP

When someone runs an app, it can retrieve information about the user from the Office365 environment. This

information can be used to personalize the app. For example, currently the app that Maria and Kiana have

developed doesn’t distinguish between the different users; they all have access to the same data. Ideally, the

app should be personalized to display the information most relevant to the engineer who uses it. Power Apps

provides a function named User that enables the app to retrieve the email and full name of the current user.

This app also requires the user ID (a unique Guid assigned to each user). The rationale behind this requirement

is that usernames can be changed, but the ID cannot. The user ID is accessible using the features provided by

the Office365 connector. The steps below illustrate how to add this connector to the app:

1. Using Power Apps Studio, in the Tree view pane, select the Home screen.

2. On the Insert menu, from the Text drop-down list, add a Label control to the screen.

3. Rename the Label control as UserName.

4. Move the control so that it appears below the details showing the next appointment:

5. In the Data pane, select Add data. In the search box, enter Office 365 Users. Add the Office 365 Users

connection to the app:

6. In the Tree view pane, select the UserName label, and set the Text property to the following formula:

Office365Users.MyProfileV2().displayName

This formula uses the Office365Users connection to retrieve identity information about the current user.

The displayName property of the MyProfileV2 function contains the user’s logged-on name.

Note: Feel free to style the UserName control to make it stand out more.

Office365 runs in an Azure AD domain, but you can also extend this security domain with your own Azure AD

installation. If your organization authenticates users through your own Azure AD domain, you can obtain user

information by using the Azure AD connector instead of Office365Users:

In this case, set the Text property of the UserName label to:

AzureAD.GetUser(User().Email).displayName

To personalize the appointments list requires calling a different Web API function in the FieldEngineerAPI

connector. Currently, the OnVisible property of the Home screen contains the following formula:

ClearCollect(appointmentsCollection,

Sort(Filter(FieldEngineerAPI.getapiappointments(), DateDiff(Today(),

startDateTime) >= 0), startDateTime));

The Web API provides an alternative function that retrieves the appointments for a specified technician; you

provide the ID of the technician as a parameter. You can use the Office365 user ID for this purpose. Update the

OnVisible property as highlighted in bold below:

Set(id, Office365Users.MyProfileV2().id);

ClearCollect(appointmentsCollection,

Sort(Filter(FieldEngineerAPI.getapischeduleengineeridappointments(id),

DateDiff(Today(), startDateTime) >= 0), startDateTime);

If you’re authenticating with Azure AD, use this formula instead:

Set(id, AzureAD.GetUser(User().Email).id);

ClearCollect(appointmentsCollection,

Filter(FieldEngineerAPI.getapischeduleengineeridappointments(id),

DateDiff(Today(), startDateTime) >= 0), startDateTime);

Note: This modification requires that the EngineerId column in the Appointments table is populated with the

user’s ID. This ID is a GUID, but is stored as a string in the database. The image below shows a few rows of

sample data:

The Engineers table must also contain an Engineer with the corresponding ID:

The app is now ready to deploy and roll out.

DEPLOYING THE APP

The simplest way to deploy an app is to publish it to your Office 365 domain. All users who have the Can use

permission can run the app, either from Power Apps Studio, or by using Microsoft Power Apps, available in the

Windows Store at https://aka.ms/AAbvtko. Power Apps can be run on mobile devices like tablets and phones

as soon as they’re published; users only need find the app in their devices’ app store.

To publish an app:

1. In Power Apps Studio, on the File menu, select Save. Save the app if you’ve made any changes. When you

save the app, the Publish button appears.

2. Select Publish. In the Publish dialog box, the Edit details option enables you to select settings, such as the

name of the app, an icon for the app, and a description. You can also change the screen size and

orientation used by the app. Select Publish this version to make the app available to other Power Apps

users in your organization.

https://aka.ms/AAbvtko

You can track the deployment history and app usage from the Apps tab on the Administrators page in Power

Apps Studio, at https://make.powerapps.com. Select the app then, on the ellipses menu, select Details:

On the Details pane, the Versions tab shows the version history for the app. The options on the ellipses menu

for an app enable you to restore a previous version if you need to roll back a recent publication.

https://make.powerapps.com/

MAINTAINING THE APP

The Power Platform admin center allows you to manage the environments in which Power Apps reside. The
suggested approach is to create and publish your apps through Dataverse environments. You use separate
environments for development and production.

Dataverse provides four types of environments:

1. Sandbox: Ideal for your development.

2. Production: Where the app should be deployed for use.

3. Developer: Assets created in here can't be shared. As a single user environment, you could use it
for learning and exploring the capabilities of Power Apps.

4. Default: An environment that’s automatically created for each tenant. Microsoft doesn't recommend you
use this for apps because everyone in your tenant could then access those apps.

You create environments using the Power Platform admin center at
https://admin.powerplatform.microsoft.com/. On the Environments tab, select the New option in the menu
bar. Specify the type of environment:

https://admin.powerplatform.microsoft.com/

A good approach to application lifecycle management (ALM) is to start in a new sandbox environment,
allowing you to safely develop and test your app in isolation from the production environment. Share and test
your app as it's being developed. When your app is ready for real use, deploy it to a production environment
and publish it from there. You can automate much of this process by using the Microsoft Power Platform Build
Tools, described at https://aka.ms/AAbvfzw

For detailed information about ALM with Power Apps as it applies to VanArsdel, go to the Scenario 1: Citizen
Development page at https://aka.ms/AAbvfzx

https://aka.ms/AAbvfzw
https://aka.ms/AAbvfzx

CHAPTER 9: CONCLUSIONS

Fusion development is not a strict methodology; rather, it’s an approach and philosophy that encourages rapid

software development.

Fusion development combines the technical and business skills of an organization’s employees to design and

build applications. This approach values the insights and abilities of the different members of the team. It

utilizes their specific insights into the business requirements and technical challenges required to implement a

solution. The synergy afforded by fusion development enables efficient communication between different

team members and enables them to iterate quickly to produce a functional system.

In this guide, you’ve seen how the staff at VanArsdel followed a fusion development approach. They produced

an app that meets the expectations of the users represented by Caleb, the technician, Maria, the inventory

manager, and Malik, who schedules engineers. Preeti is also satisfied that the system is safe and maintainable.

The project was completed in record time—from the initial discussions between Caleb and Maria, to the

rollout to all technicians.

The VanArsdel team has now experienced how fusion development teams work and is excited to keep

collaborating on future projects.

